A High-Order Compact Finite Difference Scheme for the Fractional Sub-diffusion Equation

被引:1
|
作者
Cui-cui Ji
Zhi-zhong Sun
机构
[1] Southeast University,Department of Mathematics
来源
Journal of Scientific Computing | 2015年 / 64卷
关键词
Fractional sub-diffusion equation; High-order compact difference scheme; Energy method; Stable; Convergent;
D O I
暂无
中图分类号
学科分类号
摘要
Based on the weighted and shifted Grünwald operator, a new high-order compact finite difference scheme is derived for the fractional sub-diffusion equation. It is proved that the difference scheme is unconditionally stable and convergent in L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\infty }$$\end{document}-norm by the energy method. The convergence order is O(τ3+h4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\tau ^3+h^4)$$\end{document}, where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is the temporal step size and h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document} is the spatial step size. Although the unconditional stability and convergence of the difference scheme are obtained for all α∈(0,α∗],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0, \alpha ^{*}],$$\end{document} where α∗=0.9569347,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^{*}=0.9569347,$$\end{document} some numerical experiments show that they are valid for all α∈(0,1).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0, 1).$$\end{document} Finally, some numerical examples are given to confirm the theoretical results.
引用
收藏
页码:959 / 985
页数:26
相关论文
共 50 条