Cactus graph is a graph in which any two simple cycles has at most one vertex in common. In this paper we address the ordered 1-median location problem on cactus graphs, a generalization of some popular location models such as 1-median, 1-center, and 1-centdian problems. For the case with non-decreasing multipliers, we show that there exists a cycle or an edge that contains an ordered 1-median. Based on this property, we develop a combinatorial algorithm that finds an ordered 1-median on a cactus in O(n2logn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$O(n^2\log n)$$\end{document} time, where n is the number of vertices in the underlying cactus.