The behavior of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sum\nolimits_{n = 1}^\infty {{{\zeta ^{ \llcorner n\theta \lrcorner } } \mathord{\left/ {\vphantom {{\zeta ^{ \llcorner n\theta \lrcorner } } n}} \right. \kern-\nulldelimiterspace} n}} $$\end{document} for particular values of θ

被引:0
|
作者
G. Molteni
机构
[1] Università di Milano,Dipartimento di Matematica
关键词
discrepancy; Liouville numbers; 11J99;
D O I
10.1007/s10474-007-6057-y
中图分类号
学科分类号
摘要
Let ζ be a primitive q′-root of unity. We prove that the series \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sum\nolimits_{n = 1}^\infty {{{\zeta ^{ \llcorner n\theta \lrcorner } } \mathord{\left/ {\vphantom {{\zeta ^{ \llcorner n\theta \lrcorner } } n}} \right. \kern-\nulldelimiterspace} n}} $$\end{document} for θ ∈ Q converges if and only if θ = p/q with (p,q) = 1 and q′ ∤ p, and that there exists an uncountable set S of Liouville’s numbers such that the series does not converge when θ ∈ S.
引用
收藏
页码:61 / 76
页数:15
相关论文
共 14 条