We show that for any non-trivial representation (V,π)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(V, \pi )$$\end{document} of u(2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak {u}(2)$$\end{document} with the center acting as multiples of the identity, the semidirect product u(2)⋉πV\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak {u}(2) \ltimes _\pi V$$\end{document} admits a metric with negative Ricci curvature that can be explicitly obtained. It is proved that u(2)⋉πV\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak {u}(2) \ltimes _\pi V$$\end{document} degenerates to a solvable Lie algebra that admits a metric with negative Ricci curvature. An n-dimensional Lie group with compact Levi factor SU(2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {SU}(2)$$\end{document} admitting a left invariant metric with negative Ricci is therefore obtained for any n≥7\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n \ge 7$$\end{document}.
机构:
Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, ItalyUniv Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, Italy
Bisci, Giovanni Molica
Secchi, Simone
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Roberto Cozzi 55, I-20125 Milan, ItalyUniv Mediterranea Reggio Calabria, Dipartimento PAU, I-89100 Reggio Di Calabria, Italy