We show that for any non-trivial representation (V,π)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(V, \pi )$$\end{document} of u(2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak {u}(2)$$\end{document} with the center acting as multiples of the identity, the semidirect product u(2)⋉πV\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak {u}(2) \ltimes _\pi V$$\end{document} admits a metric with negative Ricci curvature that can be explicitly obtained. It is proved that u(2)⋉πV\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak {u}(2) \ltimes _\pi V$$\end{document} degenerates to a solvable Lie algebra that admits a metric with negative Ricci curvature. An n-dimensional Lie group with compact Levi factor SU(2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {SU}(2)$$\end{document} admitting a left invariant metric with negative Ricci is therefore obtained for any n≥7\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n \ge 7$$\end{document}.
机构:
Russian Acad Sci, South Math Inst, Vladikavkaz Sci Ctr, Vladikavkaz 362027, RussiaRussian Acad Sci, South Math Inst, Vladikavkaz Sci Ctr, Vladikavkaz 362027, Russia
机构:
Univ Insubria, Dept Sci & High Technol, Via Valleggio 11, I-22100 Como, Italy
Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, ItalyUniv Insubria, Dept Sci & High Technol, Via Valleggio 11, I-22100 Como, Italy
Cacciatori, Sergio
Ursino, Pietro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Catania, Dept Math & Informat, Viale Andrea Doria 6, I-95125 Catania, ItalyUniv Insubria, Dept Sci & High Technol, Via Valleggio 11, I-22100 Como, Italy