Red giant branch bump brightness in 7 metal-poor globular clusters obtained with GAIA DR2

被引:0
作者
Fen Song
Zunli Yuan
Yan Li
Xuchao Wu
Adriano Pietrinferni
Helen Poon
Tao Wu
Jundan Nie
Hanfeng Song
Cheng Han
Ye Yang
Yuxuan Li
Xingming Bai
机构
[1] Jimei University,College of Science
[2] Chinese Academy of Sciences,Key Laboratory for Structure and Evolution of Celestial Objects
[3] Hunan Normal University,Department of Physics, School of Physics and Electronics
[4] Chinese Academy of Sciences,Yunnan Observatories
[5] Chinese Academy of Sciences,Center for Astronomical Mega
[6] University of Chinese Academy of Sciences,Science
[7] INAF-Osservatorio Astronomico d’Abruzzo,Department of Physical Science
[8] Hiroshima University,Key Laboratory of Optical Astronomy, National Astronomical Observatories
[9] Chinese Academy of Sciences,College of Physics
[10] Guizhou University,Geneva Observatory
[11] Geneva University,undefined
来源
Astrophysics and Space Science | 2022年 / 367卷
关键词
Globular clusters: general; Red giant branch bump; Hertzsprung-Russell diagrams;
D O I
暂无
中图分类号
学科分类号
摘要
The identification of the red giant branch bump brightness in metal-poor globular clusters is important for low-mass stellar evolution. The release of Gaia DR2 prompted us to revisit the red giant branch bump (RGBB) in galactic globular clusters. We apply a popular nonparametric density estimation approach, kernel density estimation (KDE), to explore the position of RGBB in 7 metal-poor globular clusters (GCs). The G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G$\end{document} and V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document} magnitudes of the RGBB according to our clustering algorithm, GB,K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G_{B,K}$\end{document} and VB,K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V_{B,K}$\end{document}, respectively show the RGB bump magnitude detected by the KDE method in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G$\end{document} band and V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document} band. They show the overdensity location in the luminosity function of the RGB stars. Based on the results derived by KDE, a maximum-likelihood analysis via a Markov Chain Monte Carlo (MCMC) approach is adopted to detect the RGB bump feature and obtain more accurate RGBB brightnesses in G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G$\end{document} band and V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V$\end{document} band for the samples. We find that the red giant branch bump brightness becomes fainter as the global metallicity increases in clusters with [M/H]≤−1.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[\text{M}/\text{H}]\leq-1.4$\end{document}. We present the empirical relation between the global metallicity [M/H]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[\text{M}/\text{H}]$\end{document} and absolute magnitude MV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{V}$\end{document} of the red giant branch bump for clusters with [M/H]≤−1.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[\text{M}/\text{H}]\leq-1.4$\end{document}. We verify that discrepancies between observations and theory for metal-poor globular clusters with [M/H]≤−1.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[\text{M}/\text{H}]\leq-1.4$\end{document}.
引用
收藏
相关论文
共 182 条
[1]  
Alexander D.R.(1994)undefined Astrophys. J. 437 879-2957
[2]  
Ferguson J.W.(1999)undefined Astrophys. J. 511 225-undefined
[3]  
Alves D.R.(1999)undefined Nucl. Phys. A 656 3-undefined
[4]  
Sarajedini A.(2004)undefined Astron. Astrophys. 424 199-undefined
[5]  
Angulo C.(2006)undefined Astrophys. J. 641 1102-undefined
[6]  
Arnould M.(2015)undefined Astrophys. J. 804 109-undefined
[7]  
Rayet M.(2001)undefined Astrophys. J. Lett. 546 2916-undefined
[8]  
Bellazzini M.(2010)undefined Ann. Stat. 38 900-undefined
[9]  
Ferraro F.R.(1996)undefined Publ. Astron. Soc. Pac. 108 695-undefined
[10]  
Sollima A.(2016)undefined Astron. Astrophys. 595 593-undefined