Discretization of Compact Riemannian Manifolds Applied to the Spectrum of Laplacian

被引:0
|
作者
Tatiana Mantuano
机构
[1] Université de Neuchâtel,Institut de Mathématiques
来源
Annals of Global Analysis and Geometry | 2005年 / 27卷
关键词
Laplacian; eigenvalues; discretization; Hausdorff-Gromov distance;
D O I
暂无
中图分类号
学科分类号
摘要
For κ ⩾ 0 and r0 > 0 let ℳ(n, κ, r0) be the set of all connected, compact n-dimensional Riemannian manifolds (Mn, g) with Ricci (M, g) ⩾ −(n−1) κ g and Inj (M) ⩾ r0. We study the relation between the kth eigenvalue λk(M) of the Laplacian associated to (Mn,g), Δ = −div(grad), and the kth eigenvalue λk(X) of a combinatorial Laplacian associated to a discretization X of M. We show that there exist constants c, C > 0 (depending only on n, κ and r0) such that for all M ∈ ℳ(n, κ, r0) and X a discretization of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M, c \leqslant \frac{\lambda_{k}(M)}{\lambda_{k}(X)} \leqslant C}$$\end{document} for all k < |X|. Then, we obtain the same kind of result for two compact manifolds M and N ∈ ℳ(n, κ, r0) such that the Gromov–Hausdorff distance between M and N is smaller than some η > 0. We show that there exist constants c, C > 0 depending on η, n, κ and r0 such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c \leqslant \frac{\lambda_{k}(M)}{\lambda_{k}(N)} \leqslant C}$$\end{document} for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k \in \mathbb{N}}$$\end{document}.
引用
收藏
页码:33 / 46
页数:13
相关论文
共 50 条