For κ ⩾ 0 and r0 > 0 let ℳ(n, κ, r0) be the set of all connected, compact n-dimensional Riemannian manifolds (Mn, g) with Ricci (M, g) ⩾ −(n−1) κ g and Inj (M) ⩾ r0. We study the relation between the kth eigenvalue λk(M) of the Laplacian associated to (Mn,g), Δ = −div(grad), and the kth eigenvalue λk(X) of a combinatorial Laplacian associated to a discretization X of M. We show that there exist constants c, C > 0 (depending only on n, κ and r0) such that for all M ∈ ℳ(n, κ, r0) and X a discretization of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${M, c \leqslant \frac{\lambda_{k}(M)}{\lambda_{k}(X)} \leqslant C}$$\end{document} for all k < |X|. Then, we obtain the same kind of result for two compact manifolds M and N ∈ ℳ(n, κ, r0) such that the Gromov–Hausdorff distance between M and N is smaller than some η > 0. We show that there exist constants c, C > 0 depending on η, n, κ and r0 such that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${c \leqslant \frac{\lambda_{k}(M)}{\lambda_{k}(N)} \leqslant C}$$\end{document} for all \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${k \in \mathbb{N}}$$\end{document}.