Study of the growth properties of meromorphic solutions of higher-order linear difference equations

被引:0
|
作者
Benharrat Belaïdi
Rachid Bellaama
机构
[1] University of Mostaganem (UMAB),Department of Mathematics, Laboratory of Pure and Applied Mathematics
来源
关键词
30D35; 39B32; 39A10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the growth of meromorphic solutions of homogeneous and non-homogeneous linear difference equations Ak(z)f(z+ck)+⋯+A1(z)f(z+c1)+A0(z)f(z)=0,Ak(z)f(z+ck)+⋯+A1(z)f(z+c1)+A0(z)f(z)=F,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} A_{k}(z)f(z+c_{k})+\cdots +A_{1}(z)f(z+c_{1})+A_{0}(z)f(z)= & {} 0, \\ A_{k}(z)f(z+c_{k})+\cdots +A_{1}(z)f(z+c_{1})+A_{0}(z)f(z)= & {} F, \end{aligned}$$\end{document}where Akz,…,A0z,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{k}\left( z\right) ,\ldots ,A_{0}\left( z\right) ,$$\end{document}Fz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\left( z\right) $$\end{document} are meromorphic functions and cj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{j}$$\end{document}1,…,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 1,\ldots ,k\right) $$\end{document} are non-zero distinct complex numbers. Under some conditions on the coefficients, we extend early results due to Zhou and Zheng, Belaïdi and Benkarouba.
引用
收藏
页码:311 / 330
页数:19
相关论文
共 50 条