In this paper, we investigate the growth of meromorphic solutions of homogeneous and non-homogeneous linear difference equations Ak(z)f(z+ck)+⋯+A1(z)f(z+c1)+A0(z)f(z)=0,Ak(z)f(z+ck)+⋯+A1(z)f(z+c1)+A0(z)f(z)=F,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} A_{k}(z)f(z+c_{k})+\cdots +A_{1}(z)f(z+c_{1})+A_{0}(z)f(z)= & {} 0, \\ A_{k}(z)f(z+c_{k})+\cdots +A_{1}(z)f(z+c_{1})+A_{0}(z)f(z)= & {} F, \end{aligned}$$\end{document}where Akz,…,A0z,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A_{k}\left( z\right) ,\ldots ,A_{0}\left( z\right) ,$$\end{document}Fz\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F\left( z\right) $$\end{document} are meromorphic functions and cj\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c_{j}$$\end{document}1,…,k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( 1,\ldots ,k\right) $$\end{document} are non-zero distinct complex numbers. Under some conditions on the coefficients, we extend early results due to Zhou and Zheng, Belaïdi and Benkarouba.