Noncommutative Catalan Numbers

被引:0
作者
Arkady Berenstein
Vladimir Retakh
机构
[1] University of Oregon,Department of Mathematics
[2] Rutgers University,Department of Mathematics
来源
Annals of Combinatorics | 2019年 / 23卷
关键词
Catalan numbers; Laurent polynomials; Non-commuting variables; 16T30; 05A15; 05E99;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of this paper is to introduce and study noncommutative Catalan numbersCn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document} which belong to the free Laurent polynomial algebra Ln\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}_n$$\end{document} in n generators. Our noncommutative numbers admit interesting (commutative and noncommutative) specializations, one of them related to Garsia–Haiman (q, t)-versions, another—to solving noncommutative quadratic equations. We also establish total positivity of the corresponding (noncommutative) Hankel matrices Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_n$$\end{document} and introduce accompanying noncommutative binomial coefficients[inline-graphic not available: see fulltext].
引用
收藏
页码:527 / 547
页数:20
相关论文
共 31 条
[1]  
Aigner M(1999)Catalan-like numbers and determinants J. Combin. Theory Ser. A 87 33-51
[2]  
Andrews G(1987)Catalan numbers, J. Combin. Theory Ser. A 44 267-273
[3]  
Berenstein A(2011)-Catalan numbers and hypergeometric series C. R. Math. Acad. Sci. Paris 349 119-122
[4]  
Retakh V(2018)A short proof of Kontsevich’s cluster conjecture Adv. Math. 328 1010-1087
[5]  
Berenstein A(1972)Noncommutative marked surfaces Fibonacci Quart. 10 531-549
[6]  
Retakh V(1964)Sequences, paths, ballot numbers Duke Math. J. 31 371-388
[7]  
Carlitz L(2011)Two element lattice permutation numbers and their Adv. Math. 228 97-152
[8]  
Carlitz L(1985)-generalization J. Combin. Theory Ser. A 40 248-264
[9]  
Riordan J(1996)Non-commutative integrability, paths and quasi-determinants J. Algebraic Combin. 5 191-244
[10]  
Di Francesco Ph(2002)-Catalan numbers Discrete Math. 256 677-717