Objective Bayesian transformation and variable selection using default Bayes factors

被引:0
作者
E. Charitidou
D. Fouskakis
I. Ntzoufras
机构
[1] National Technical University of Athens,Department of Mathematics
[2] Athens University of Economics and Business,Department of Statistics
来源
Statistics and Computing | 2018年 / 28卷
关键词
Bayesian model selection; Fractional Bayes factor; Intrinsic Bayes factor; Posterior model probabilities; Transformation family selection; Variable selection;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, the problem of transformation and simultaneous variable selection is thoroughly treated via objective Bayesian approaches by the use of default Bayes factor variants. Four uniparametric families of transformations (Box–Cox, Modulus, Yeo-Johnson and Dual), denoted by T, are evaluated and compared. The subjective prior elicitation for the transformation parameter λT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _T$$\end{document}, for each T, is not a straightforward task. Additionally, little prior information for λT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _T$$\end{document} is expected to be available, and therefore, an objective method is required. The intrinsic Bayes factors and the fractional Bayes factors allow us to incorporate default improper priors for λT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _T$$\end{document}. We study the behaviour of each approach using a simulated reference example as well as two real-life examples.
引用
收藏
页码:579 / 594
页数:15
相关论文
共 57 条
[1]  
Bartlett MS(1957)Comment on D.V. Lindley’s statistical paradox Biometrika 44 533-534
[2]  
Berger JO(1996)The intrinsic Bayes factor for model selection and prediction J. Am. Stat. Assoc. 91 109-122
[3]  
Pericchi LR(2004)Training samples in objective model selection Ann. Stat. 32 841-869
[4]  
Berger JO(1964)An analysis of transformations (with discussion) J. R. Stat. Soc. Ser. B 26 211-252
[5]  
Pericchi LR(2006)Objective Bayesian variable selection J. Am. Stat. Assoc. 101 157-167
[6]  
Box GEP(2015)Bayesian transformation family selection: moving towards a transformed Gaussian universe Can. J. Stat. 43 600-623
[7]  
Cox DR(2008)Compatibility of prior specifications accross linear models Stat. Sci. 23 332-363
[8]  
Casella G(2009)Bayesian robust variable and transformation selection: a unified approach Can. J. Stat. 37 1-20
[9]  
Moreno E(1998)Bayesian predictive simultaneous variable and transformation selection in the linear model J. Comput. Stat. Data Anal. 28 87-103
[10]  
Charitidou E(2002)A method for simultaneous variable and transformation selection in linear regression J. Comput. Graph. Stat. 11 485-507