Constacyclic codes over mixed alphabets and their applications in constructing new quantum codes

被引:0
作者
Hai Q. Dinh
Sachin Pathak
Tushar Bag
Ashish Kumar Upadhyay
Woraphon Yamaka
机构
[1] Kent State University,Department of Mathematical Sciences
[2] Indian Institute of Technology Patna,Department of Mathematics
[3] Banaras Hindu University,Department of Mathematics, Institute of Science
[4] Chiang Mai University,Centre of Excellence in Econometrics, Faculty of Economics
来源
Quantum Information Processing | 2021年 / 20卷
关键词
Constacyclic codes; Generator polynomials; Separable codes; QECCs; 94B05; 94B60; 11T71; 14G50;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be an odd prime and m be a positive integer, q=pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=p^m$$\end{document}, R=Fq+uFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}={\mathbb {F}}_q+u{\mathbb {F}}_q$$\end{document} with u2=u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^2=u$$\end{document}, and S=Fq+uFq+vFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}={\mathbb {F}}_q+u{\mathbb {F}}_q+v{\mathbb {F}}_q$$\end{document} with u2=u,v2=v,uv=vu=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^2=u, v^2=v, uv=vu=0$$\end{document} and Λ=(λ1,λ2,λ3)∈FqRS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda =(\lambda _1,\lambda _2,\lambda _3)\in {\mathbb {F}}_q{\mathcal {R}}{\mathcal {S}}$$\end{document}. In this paper, we study the algebraic structure of constacyclic codes over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$$\end{document} and S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document}. Further, we discuss the structure of FqRS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q{\mathcal {R}}{\mathcal {S}}$$\end{document}-Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}-constacyclic codes of block length (α,β,γ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha ,\beta ,\gamma )$$\end{document}. This family of codes can be viewed as S[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}[x]$$\end{document}-submodules of Fq[x]⟨xα-λ1⟩×R[x]⟨xβ-λ2⟩×S[x]⟨xγ-λ3⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{{\mathbb {F}}_q[x]}{\langle x^{\alpha }-\lambda _1\rangle }\times \frac{{\mathcal {R}}[x]}{\langle x^{\beta }-\lambda _2\rangle }\times \frac{{\mathcal {S}}[x]}{\langle x^{\gamma }-\lambda _3\rangle }$$\end{document}. The generator polynomials of this family of codes are discussed. As application, we discuss the construction of quantum error-correcting codes (QECCs) from constacyclic codes over FqRS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q{\mathcal {R}}{\mathcal {S}}$$\end{document} and obtain several new QECCs from this study.
引用
收藏
相关论文
共 127 条
  • [1] Abualrub T(2014)-additive cyclic and codes IEEE Trans. Inf. Theory 60 1508-1514
  • [2] Siap I(2015)Construction of quantum codes from cyclic codes over Int. J. Inf. Coding Theory 3 137-144
  • [3] Aydin N(2016)Quantum codes from cyclic codes over Quantum Inf. Process. 15 4089-4098
  • [4] Ashraf M(2019)Quantum codes over Cryptogr. Commun. 11 325-335
  • [5] Mohammad G(2015) from cyclic codes over Int. J. Comput. Math. 92 1806-1814
  • [6] Ashraf M(2017)On IEEE Trans. Inf. Theory 63 4883-4893
  • [7] Mohammad G(2018)-additive codes J. Appl. Math. Comput. 48 241-260
  • [8] Ashraf M(2017)On Finite Fields Appl. 7 2271-2278
  • [9] Mohammad G(2013)-cyclic and constacyclic codes Appl. Math. Inf. Sci. 51 265-275
  • [10] Aydogdu I(2020)-Cyclic codes Discrete Math. 24 486-490