Random-Cluster Representation of the Blume–Capel Model

被引:0
作者
B. T. Graham
G. R. Grimmett
机构
[1] University of Cambridge,Statistical Laboratory
来源
Journal of Statistical Physics | 2006年 / 125卷
关键词
Blume–Capel model; Ising model; Potts model; random-cluster model; first-order phase transition; tri-critical point;
D O I
暂无
中图分类号
学科分类号
摘要
The so-called diluted-random-cluster model may be viewed as a random-cluster representation of the Blume–Capel model. It has three parameters, a vertex parameter a, an edge parameter p, and a cluster weighting factor q. Stochastic comparisons of measures are developed for the ‘vertex marginal’ when q ∊ [1,2], and the ‘edge marginal’ when q ∊ [1,∞). Taken in conjunction with arguments used earlier for the random-cluster model, these permit a rigorous study of part of the phase diagram of the Blume–Capel model.
引用
收藏
页码:283 / 316
页数:33
相关论文
共 78 条
[1]  
Aizenman M.(1987)The phase transition in a general class of Ising-type models is sharp Comm. Math. Phys. 47 343-374
[2]  
Barsky D. J.(1987)Percolation of the minority spins in high dimensional Ising models J. Statist. Phys. 49 859-865
[3]  
Fernández R.(1988)Discontinuity of the magnetization in one-dimensional 1/|x , y| J. Statist. Phys. 50 1-40
[4]  
Aizenman M.(1986) Ising and Potts models J. Statist. Phys. 44 393-454
[5]  
Bricmont J.(2001)On the critical behavior of the magnetization in high-dimensional Ising models Probab. Th. Rel. Fields 120 395-444
[6]  
Lebowitz J. L.(2001)The asymmetric random cluster model and comparison of Ising and Potts models Ann. Probab. 29 1-65
[7]  
Aizenman M.(2004)Uniform spanning forests J. Statist. Phys. 116 97-155
[8]  
Chayes J. T.(2006)Partition function zeros at first-order phase transitions: Pirogov–Sinai theory J. Statist. Phys. 122 1139-1193
[9]  
Chayes L.(1966)Mean-field driven first-order phase transitions in systems with long-range interactions Phys. Rev. 141 517-524
[10]  
Newman C. M.(2000)Theory of the first-order magnetic phase change in UO J. Statist. Phys. 100 805-827