Fractal diffusion from a geometric Ricci flow

被引:0
|
作者
Rami Ahmad El-Nabulsi
机构
[1] Chiang Mai University,Center of Excellence in Quantum Technology, Faculty of Engineering
[2] Chiang Mai University,Research Center for Quantum Technology, Faculty of Science
[3] Chiang Mai University,Department of Physics and Materials Science, Faculty of Science
[4] Athens Institute for Education and Research,Mathematics and Physics Divisions
来源
Journal of Elliptic and Parabolic Equations | 2022年 / 8卷
关键词
Ricci flow; Fractal derivative; Anomalous Gaussian measure; 53C44; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
We study a geometric Ricci flow on a fixed manifold where space and time scales followed the two-scale transform (xβ,tα)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x^{\beta } ,t^{\alpha } )$$\end{document}, α,β>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta > 0$$\end{document}. The fractal evolution equations are obtained and the resultant Ricci flow is derived accordingly. For slow velocity of the flow, it was observed that Ricci flow is characterized by an anomalous Gaussian measure similar to what is obtained in anomalous diffusion with variable diffusion coefficient. This result indirectly shows that the fractal Ricci flow may be used to study nonlinear reaction–diffusion processes arising in various fields of applied mathematics.
引用
收藏
页码:837 / 852
页数:15
相关论文
共 50 条
  • [1] Fractal diffusion from a geometric Ricci flow
    El-Nabulsi, Rami Ahmad
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (02) : 837 - 852
  • [2] Geometric singularities and a flow tangent to the Ricci flow
    Bandara, Lashi
    Lakzian, Sajjad
    Munn, Michael
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2017, 17 (02) : 763 - 804
  • [3] Heat Kernel Coupled with Geometric Flow and Ricci Flow
    Coulibaly-Pasquier, Kolehe A.
    SEMINAIRE DE PROBABILITES L, 2019, 2252 : 221 - 256
  • [4] Evolution of a geometric constant along the Ricci flow
    Guangyue Huang
    Zhi Li
    Journal of Inequalities and Applications, 2016
  • [5] Evolution of a geometric constant along the Ricci flow
    Huang, Guangyue
    Li, Zhi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 11
  • [6] First eigenvalues of geometric operators under the Ricci flow
    Cao, Xiaodong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (11) : 4075 - 4078
  • [7] Geometric Formalities Along the Chern-Ricci Flow
    Daniele Angella
    Tommaso Sferruzza
    Complex Analysis and Operator Theory, 2020, 14
  • [8] Geometric Formalities Along the Chern-Ricci Flow
    Angella, Daniele
    Sferruzza, Tommaso
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (01)
  • [9] Evolution and monotonicity of a geometric constant under the Ricci flow
    Fang, Shouwen
    Yu, Junwei
    Zhu, Peng
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (01) : 385 - 400
  • [10] Evolution and Monotonicity of Geometric Constants Along the Extended Ricci Flow
    Saha, Apurba
    Azami, Shahroud
    Hui, Shyamal Kumar
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)