Given an undirected simple graph G with node set V and edge set E, let fv\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_v$$\end{document}, for each node v∈V\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v \in V$$\end{document}, denote a nonnegative integer value that is lower than or equal to the degree of v in G. An f-dominating set in G is a node subset D such that for each node v∈V\D\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v\in V{{\setminus }}D$$\end{document} at least fv\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_v$$\end{document} of its neighbors belong to D. In this paper, we study the polyhedral structure of the polytope defined as the convex hull of all the incidence vectors of f-dominating sets in G and give a complete description for the case of trees. We prove that the corresponding separation problem can be solved in polynomial time. In addition, we present a linear-time algorithm to solve the weighted version of the problem on trees: Given a cost cv∈R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c_v\in {\mathbb {R}}$$\end{document} for each node v∈V\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v\in V$$\end{document}, find an f-dominating set D in G whose cost, given by ∑v∈Dcv\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sum _{v\in D}{c_v}$$\end{document}, is a minimum.
机构:
Univ Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South AfricaUniv Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South Africa
Henning, Michael A.
Pandey, Arti
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Ropar, Dept Math, Nangal Rd, Rupnagar 140001, Punjab, IndiaUniv Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South Africa
Pandey, Arti
Tripathi, Vikash
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Ropar, Dept Math, Nangal Rd, Rupnagar 140001, Punjab, IndiaUniv Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South Africa