On f-domination: polyhedral and algorithmic results

被引:0
|
作者
Mauro Dell’Amico
José Neto
机构
[1] University of Modena and Reggio Emilia,Department of Sciences and Methods for Engineering
[2] Université Paris-Saclay,Samovar, Telecom SudParis, CNRS
来源
Mathematical Methods of Operations Research | 2019年 / 90卷
关键词
Domination; Polyhedral combinatorics; Tree; Linear-time algorithm; 05C69; 51M20; 68Q25; 68R10; 90C10;
D O I
暂无
中图分类号
学科分类号
摘要
Given an undirected simple graph G with node set V and edge set E, let fv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_v$$\end{document}, for each node v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V$$\end{document}, denote a nonnegative integer value that is lower than or equal to the degree of v in G. An f-dominating set in G is a node subset D such that for each node v∈V\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V{{\setminus }}D$$\end{document} at least fv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_v$$\end{document} of its neighbors belong to D. In this paper, we study the polyhedral structure of the polytope defined as the convex hull of all the incidence vectors of f-dominating sets in G and give a complete description for the case of trees. We prove that the corresponding separation problem can be solved in polynomial time. In addition, we present a linear-time algorithm to solve the weighted version of the problem on trees: Given a cost cv∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_v\in {\mathbb {R}}$$\end{document} for each node v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V$$\end{document}, find an f-dominating set D in G whose cost, given by ∑v∈Dcv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{v\in D}{c_v}$$\end{document}, is a minimum.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 50 条
  • [41] Multiprocessor scheduling under precedence constraints: Polyhedral results
    Coll, PE
    Ribeiro, CC
    de Souza, CC
    DISCRETE APPLIED MATHEMATICS, 2006, 154 (05) : 770 - 801
  • [43] Algorithm and hardness results on neighborhood total domination in graphs
    Jha, Anupriya
    Pradhan, D.
    Banerjee, S.
    THEORETICAL COMPUTER SCIENCE, 2020, 840 : 16 - 32
  • [44] Approximation Algorithm and Hardness Results for Defensive Domination in Graphs
    Henning, Michael A.
    Pandey, Arti
    Tripathi, Vikash
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2021, 2021, 13135 : 247 - 261
  • [45] SOME RESULTS ON ROMAN DOMINATION EDGE CRITICAL GRAPHS
    Chellali, Mustapha
    Rad, Nader Jafari
    Volkmann, Lutz
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2012, 9 (02) : 195 - 203
  • [46] New results on 3-domination critical graphs
    Balbuena, Camino
    Hansberg, Adriana
    AEQUATIONES MATHEMATICAE, 2012, 83 (03) : 257 - 269
  • [47] Algorithmic results in secure total dominating sets on graphs
    Poureidi, Abolfazl
    THEORETICAL COMPUTER SCIENCE, 2022, 918 : 1 - 17
  • [48] POLYHEDRAL RESULTS AND VALID INEQUALITIES FOR THE MAXIMAL COVERING LOCATION PROBLEM
    Chen, Sheng-Jie
    Chen, Liang
    Bao, Wen-Cheng
    Wei, Zhou
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (10) : 2441 - 2456
  • [49] The time-dependent rural postman problem: polyhedral results
    Tan, Guozhen
    Sun, Jinghao
    Hou, Guangjian
    OPTIMIZATION METHODS & SOFTWARE, 2013, 28 (04) : 855 - 870
  • [50] NECESSARY AND SUFFICIENT CONDITIONS FOR DOMINATION RESULTS FOR PROPER SCORING RULES
    Pruss, Alexander R. R.
    REVIEW OF SYMBOLIC LOGIC, 2024, 17 (01) : 132 - 143