On f-domination: polyhedral and algorithmic results

被引:0
|
作者
Mauro Dell’Amico
José Neto
机构
[1] University of Modena and Reggio Emilia,Department of Sciences and Methods for Engineering
[2] Université Paris-Saclay,Samovar, Telecom SudParis, CNRS
来源
Mathematical Methods of Operations Research | 2019年 / 90卷
关键词
Domination; Polyhedral combinatorics; Tree; Linear-time algorithm; 05C69; 51M20; 68Q25; 68R10; 90C10;
D O I
暂无
中图分类号
学科分类号
摘要
Given an undirected simple graph G with node set V and edge set E, let fv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_v$$\end{document}, for each node v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V$$\end{document}, denote a nonnegative integer value that is lower than or equal to the degree of v in G. An f-dominating set in G is a node subset D such that for each node v∈V\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V{{\setminus }}D$$\end{document} at least fv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_v$$\end{document} of its neighbors belong to D. In this paper, we study the polyhedral structure of the polytope defined as the convex hull of all the incidence vectors of f-dominating sets in G and give a complete description for the case of trees. We prove that the corresponding separation problem can be solved in polynomial time. In addition, we present a linear-time algorithm to solve the weighted version of the problem on trees: Given a cost cv∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_v\in {\mathbb {R}}$$\end{document} for each node v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V$$\end{document}, find an f-dominating set D in G whose cost, given by ∑v∈Dcv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{v\in D}{c_v}$$\end{document}, is a minimum.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 50 条
  • [21] Theories and Dimensions of Algorithmic Power, between Agency and Domination
    Airoldi, Massimo
    SCIENZA & POLITICA-PER UNA STORIA DELLE DOTTRINE, 2024, 36 (70): : 49 - 63
  • [22] Algorithmic aspects of the k-domination problem in graphs
    Lan, James K.
    Chang, Gerard Jennhwa
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1513 - 1520
  • [23] Algorithmic aspects of total Roman {3}-domination in graphs
    Chakradhar, Padamutham
    Reddy, Palagiri Venkata Subba
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (05)
  • [24] Algorithmic aspects of b-disjunctive domination in graphs
    Panda, B. S.
    Pandey, Arti
    Paul, S.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (02) : 572 - 590
  • [25] Algorithmic aspects of b-disjunctive domination in graphs
    B. S. Panda
    Arti Pandey
    S. Paul
    Journal of Combinatorial Optimization, 2018, 36 : 572 - 590
  • [26] Algorithmic aspects of k-tuple total domination in graphs
    Pradhan, D.
    INFORMATION PROCESSING LETTERS, 2012, 112 (21) : 816 - 822
  • [27] Algorithmic aspects of open neighborhood location-domination in graphs
    Panda, B. S.
    Pandey, Arti
    DISCRETE APPLIED MATHEMATICS, 2017, 216 : 290 - 306
  • [28] Differentiating-total domination: Approximation and hardness results
    Panda, B. S.
    Goyal, Pooja
    Pradhan, D.
    THEORETICAL COMPUTER SCIENCE, 2021, 876 : 45 - 58
  • [29] Further results on the signed Italian domination
    A. Karamzadeh
    H. R. Maimani
    A. Zaeembashi
    Journal of Applied Mathematics and Computing, 2021, 66 : 823 - 834
  • [30] Complexity Results on Cosecure Domination in Graphs
    Kusum
    Pandey, Arti
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2023, 2023, 13947 : 335 - 347