On f-domination: polyhedral and algorithmic results

被引:0
|
作者
Mauro Dell’Amico
José Neto
机构
[1] University of Modena and Reggio Emilia,Department of Sciences and Methods for Engineering
[2] Université Paris-Saclay,Samovar, Telecom SudParis, CNRS
来源
Mathematical Methods of Operations Research | 2019年 / 90卷
关键词
Domination; Polyhedral combinatorics; Tree; Linear-time algorithm; 05C69; 51M20; 68Q25; 68R10; 90C10;
D O I
暂无
中图分类号
学科分类号
摘要
Given an undirected simple graph G with node set V and edge set E, let fv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_v$$\end{document}, for each node v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V$$\end{document}, denote a nonnegative integer value that is lower than or equal to the degree of v in G. An f-dominating set in G is a node subset D such that for each node v∈V\D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V{{\setminus }}D$$\end{document} at least fv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_v$$\end{document} of its neighbors belong to D. In this paper, we study the polyhedral structure of the polytope defined as the convex hull of all the incidence vectors of f-dominating sets in G and give a complete description for the case of trees. We prove that the corresponding separation problem can be solved in polynomial time. In addition, we present a linear-time algorithm to solve the weighted version of the problem on trees: Given a cost cv∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_v\in {\mathbb {R}}$$\end{document} for each node v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V$$\end{document}, find an f-dominating set D in G whose cost, given by ∑v∈Dcv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{v\in D}{c_v}$$\end{document}, is a minimum.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 50 条
  • [1] On f-domination: polyhedral and algorithmic results
    Dell'Amico, Mauro
    Neto, Jose
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2019, 90 (01) : 1 - 22
  • [2] On total f-domination: Polyhedral and algorithmic results
    Dell'Amico, Mauro
    Neto, Jose
    DISCRETE APPLIED MATHEMATICS, 2019, 258 : 97 - 104
  • [3] On F-domination in graphs
    Raju, Manju
    Bhutani, Kiran R.
    Moazzez, Babak
    Arumugam, S.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 60 - 64
  • [4] Semitotal Domination in Graphs: Partition and Algorithmic Results
    Henning, Michael A.
    Marcon, Alister J.
    UTILITAS MATHEMATICA, 2018, 106 : 165 - 184
  • [5] Algorithmic results on double Roman domination in graphs
    Banerjee, S.
    Henning, Michael A.
    Pradhan, D.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (01) : 90 - 114
  • [6] Algorithmic results on double Roman domination in graphs
    S. Banerjee
    Michael A. Henning
    D. Pradhan
    Journal of Combinatorial Optimization, 2020, 39 : 90 - 114
  • [7] Algorithmic aspect of stratified domination in graphs
    Chang, Gerard Jennhwa
    Chang, Chan-Wei
    Kuo, David
    Poon, Sheung-Hung
    INFORMATION PROCESSING LETTERS, 2013, 113 (22-24) : 861 - 865
  • [8] Algorithmic Domination in the Gig Economy
    Muldoon, James
    Raekstad, Paul
    EUROPEAN JOURNAL OF POLITICAL THEORY, 2023, 22 (04) : 587 - 607
  • [9] Algorithmic aspect of k-tuple domination in graphs
    Liao, CS
    Chang, GJ
    TAIWANESE JOURNAL OF MATHEMATICS, 2002, 6 (03): : 415 - 420
  • [10] Algorithmic aspects of semitotal domination in graphs
    Henning, Michael A.
    Pandey, Arti
    THEORETICAL COMPUTER SCIENCE, 2019, 766 : 46 - 57