Double bordered constructions of self-dual codes from group rings over Frobenius rings

被引:0
作者
Joe Gildea
Rhian Taylor
Abidin Kaya
A. Tylyshchak
机构
[1] University of Chester,Department of Mathematics
[2] Sampoerna Academy,Department of Algebra
[3] Uzhgorod National University,undefined
来源
Cryptography and Communications | 2020年 / 12卷
关键词
Group rings; Self-dual codes; Codes over rings; Extremal codes; Bordered constructions; 94B05; 94B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we describe a double bordered construction of self-dual codes from group rings. We show that this construction is effective for groups of order 2p where p is odd, over the rings F2+uF2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2}+u\mathbb {F}_{2}$\end{document} and F4+uF4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{4}+u\mathbb {F}_{4}$\end{document}. We demonstrate the importance of this new construction by finding many new binary self-dual codes of lengths 64, 68 and 80; the new codes and their corresponding weight enumerators are listed in several tables.
引用
收藏
页码:769 / 784
页数:15
相关论文
共 74 条
[1]  
Bernhardt F(1990)The extended Golay codes considered as ideals J. Combin. Theory Ser. A 55 235-246
[2]  
Landrock P(2003)On self-dual codes over some prime fields Discrete Math. 262 37-58
[3]  
Manz O(1969)Some results on quasi-cyclic codes Inf. Control. 15 407-423
[4]  
Betsumiya K(1990)A new upper bound on the minimal distance of self-dual codes IEEE Trans. Inform. Theory 36 1319-1333
[5]  
Georgiou S(2018)Generalized AG codes and generalized duality Finite Fields Appl. 9 194-210
[6]  
Gulliver TA(1999)Type II codes over $\mathbb {F}_{2}+u\mathbb {F}_{2}$F2 + uF2 IEEE Trans. Inform. Theory 45 32-45
[7]  
Harada M(2018)Group rings, G-codes and constructions of self-dual and formally self-dual codes Des. Codes Cryptogr. 86 2115-2138
[8]  
Koukouvinos C(2019)Bordered constructions of self-dual codes from group rings and new extremal binary self-dual codes Finite Fields Appl. 57 108-127
[9]  
Chen CL(1997)Extremal binary self-dual codes IEEE Trans. Inform. Theory 43 2036-2047
[10]  
Peterson WW(2010)Self-dual codes over commutative Frobenius rings Finite Fields Appl. 16 14-26