Exact solutions for non-linear Duffing’s equations by He’s homotopy perturbation method

被引:0
作者
Z. Azimzadeh
A. R. Vahidi
E. Babolian
机构
[1] Science and Research Branch,Department of Mathematics
[2] Islamic Azad University,Department of Mathematics
[3] Shahr-e-Rey Branch,undefined
[4] Islamic Azad University,undefined
来源
Indian Journal of Physics | 2012年 / 86卷
关键词
Homotopy perturbation method; Differential equations; Duffing’s equation; 45.20.D; 45.50.Dd;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the homotopy perturbation method (HPM) is proposed to solve Duffing’s equation, which yields a series solution. Then, Padé approximation yielding the analytic approximate solution with fast convergence rate and high accuracy is applied for the series solution derived from the HPM. To illustrate the ability and the reliability of the method, two examples are provided. The results reveal that the method is very effective and simple.
引用
收藏
页码:721 / 726
页数:5
相关论文
共 55 条
[1]  
Malik A(2012)undefined Indian J. Phys. 86 129-undefined
[2]  
Chand F(2011)undefined Curr. Appl. Phys. 11 965-undefined
[3]  
Kumar H(2011)undefined Comput. Appl. Math. 235 2956-undefined
[4]  
Mishra S C(2003)undefined Phys. Lett. A 311 365-undefined
[5]  
Ghafoori S(2003)undefined Chaos Solitons Fractals 15 425-undefined
[6]  
Motevalli M(2008)undefined Chaos Solitons Fractals 37 144-undefined
[7]  
Nejad M G(2011)undefined Comput. Math. Appl. 61 1935-undefined
[8]  
Shakeri F(2006)undefined Appl. Math. Comput. 177 572-undefined
[9]  
Ganji D D(2006)undefined Chaos Solitons Fractals 30 1221-undefined
[10]  
Jalaal M(2009)undefined Math. Anal. 3 711-undefined