Agrobacterium-mediated transformation of Artemisia absinthium L. (wormwood) and production of secondary metabolites

被引:0
|
作者
S. Nin
A. Bennici
G. Roselli
D. Mariotti
S. Schiff
R. Magherini
机构
[1] Dipartimento di Ortoflorofrutticoltura,
[2] Università di Firenze,undefined
[3] Via Donizetti 6,undefined
[4] I-50144 Firenze,undefined
[5] Italy,undefined
[6] Dipartimento di Biologia Vegetale,undefined
[7] Università di Firenze,undefined
[8] Piazzale delle Cascine 28,undefined
[9] I-50144 Firenze,undefined
[10] Italy,undefined
[11] Istituto sulla Propagazione delle Specie Legnose,undefined
[12] Consiglio Nazionale delle Ricerche,undefined
[13] Via Ponte di Formicola 76,undefined
[14] I-50018 Scandicci,undefined
[15] Firenze,undefined
[16] Italy,undefined
[17] ,undefined
[18] Istituto di Radiochimica ed Ecofisiologia Vegetali,undefined
[19] Consiglio Nazionale delle Ricerche,undefined
[20] Via Salaria km 29300,undefined
[21] I-00016 Monterotondo Scalo,undefined
[22] Roma,undefined
[23] Italy,undefined
来源
Plant Cell Reports | 1997年 / 16卷
关键词
Key words Wormwood; Hairy roots; Genetic transformation; Essential oil; Secondary metabolites;
D O I
暂无
中图分类号
学科分类号
摘要
Hairy roots were obtained after infection of Artemisia absinthium shoots with Agrobacterium rhizogenes strains 1855 and LBA 9402. The susceptibility to hairy root transformation varied between plant genotypes and bacterial strains. Hairy roots showed macroscopic differences from control root cultures. Southern blot hybridization confirmed the integration of T-DNA from both p1855 and pBin19, while polymerase chain reaction analysis indicated the presence of the neomycin phosphotransferase gene in the hairy root genome. Subcultured transformed root lines grew well in selective B5 agar-solidified medium containing kanamycin or rifampicin and without hormones. Shake-flask experiments with fast-growing root lines showed that 40 g l–1 was the best sucrose concentration for biomass production, yielding a 463-fold increase in dry weight after 28 days of culture. Great differences were found in the profiles of the essential oils isolated from normal and hairy roots. Gas chromatography/mass spectrometry analysis showed the oil produced by transformed cultures to be a mixture of 50 compounds with only one major component representing 37% of the oil content.
引用
收藏
页码:725 / 730
页数:5
相关论文
共 50 条
  • [31] Agrobacterium-mediated transformation of Asparagus officinalis L.: molecular and genetic analysis of transgenic plants
    A. Limanton-Grevet
    M. Jullien
    Molecular Breeding, 2001, 7 : 141 - 150
  • [32] In vitro direct plant regeneration and Agrobacterium-mediated transformation of lucerne (Medicago sativa L.)
    Kumar, S.
    Tiwari, R.
    Chandra, A.
    Sharma, A.
    Bhatnagar, R. K.
    GRASS AND FORAGE SCIENCE, 2013, 68 (03) : 459 - 468
  • [33] AgarTrap: A Simplified Agrobacterium-Mediated Transformation Method for Sporelings of the Liverwort Marchantia polymorpha L.
    Tsuboyama, Shoko
    Kodama, Yutaka
    PLANT AND CELL PHYSIOLOGY, 2014, 55 (01) : 229 - 236
  • [34] Agrobacterium-mediated transformation of Asparagus officinalis L.:: molecular and genetic analysis of transgenic plants
    Limanton-Grevet, A
    Jullien, M
    MOLECULAR BREEDING, 2001, 7 (02) : 141 - 150
  • [35] Optimization of regeneration and Agrobacterium-mediated transformation of immature cotyledons of chickpea (Cicer arietinum L.)
    Leena Tripathi
    Aditya K. Singh
    Shweta Singh
    Rani Singh
    Sonam Chaudhary
    Indraneel Sanyal
    D. V. Amla
    Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 113 : 513 - 527
  • [36] A Rapid and Stable Agrobacterium-Mediated Transformation Method of a Medicinal Plant Chelone glabra L.
    Gao, Zhenrui
    Li, Ying
    Chen, Jinhua
    Chen, Zhixing
    Cui, Min-Long
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2015, 175 (05) : 2390 - 2398
  • [37] Efficient production of transgenic melon via Agrobacterium-mediated transformation
    Bezirganoglu, I.
    Hwang, S. Y.
    Shaw, J. F.
    Fang, T. J.
    GENETICS AND MOLECULAR RESEARCH, 2014, 13 (02) : 3218 - 3227
  • [38] Factors influencing Agrobacterium-mediated transformation of Brassica rapa L
    Takasaki, T
    Hatakeyama, K
    Ojima, K
    Watanabe, M
    Toriyama, K
    Hinata, K
    BREEDING SCIENCE, 1997, 47 (02) : 127 - 134
  • [39] Efficient production of transgenic tomatoes via Agrobacterium-mediated transformation
    Kaur, P.
    Bansal, K. C.
    BIOLOGIA PLANTARUM, 2010, 54 (02) : 344 - 348
  • [40] Agrobacterium-mediated transformation of Solanum phureja
    Ducreux, LJM
    Morris, WL
    Taylor, MA
    Millam, S
    PLANT CELL REPORTS, 2005, 24 (01) : 10 - 14