A New Formula for the Bernoulli Polynomials

被引:0
作者
István Mező
机构
[1] University of Debrecen,Department of Applied Mathematics and Probability Theory, Faculty of Informatics
来源
Results in Mathematics | 2010年 / 58卷
关键词
11B73; Stirling numbers; -Stirling numbers; Whitney numbers; Bernoulli polynomials; Harmonic numbers; Stirling-type pairs; Hyperharmonic numbers; Harmonic polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
In this note we show that a seemingly new class of Stirling-type pairs can be applied to produce a new representation of the Bernoulli polynomials at positive rational arguments. A class of generalized harmonic numbers is also investigated, and we point out that these give a new relation for the so-called harmonic polynomials.
引用
收藏
页码:329 / 335
页数:6
相关论文
共 13 条
[1]  
Benjamin A.T.(2003)A combinatorial approach to hyperharmonic numbers INTEGERS Electron J Combin Number Theory 3 1-9
[2]  
Gaebler D.(1996)On Whitney numbers of Dowling lattices Discrete Math. 159 13-33
[3]  
Gaebler R.(1984)The Discrete Math. 49 241-259
[4]  
Benoumhani M.(2008)-Stirling numbers J. Number Theory 128 413-425
[5]  
Broder A.Z.(2008)Generalized harmonic numbers with Riordan arrays Appl. Math. Comput. 206 942-951
[6]  
Cheon G.-S.(1998)A symmetric algorithm for hyperharmonic and Fibonacci numbers Adv. Appl. Math. 20 366-384
[7]  
El-Mikkawy M.E.A.(2009)A unified approach to generalized Stirling numbers Cent. Eur. J. Math. 7 310-321
[8]  
Dil A.(undefined)Euler–Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence undefined undefined undefined-undefined
[9]  
Mező I.(undefined)undefined undefined undefined undefined-undefined
[10]  
Hsu L.C.(undefined)undefined undefined undefined undefined-undefined