A review on key pretreatment approaches for lignocellulosic biomass to produce biofuel and value-added products

被引:0
|
作者
B. R. Prasad
R. K. Padhi
G. Ghosh
机构
[1] GIET University,Department of Biotechnology, School of Engineering and Technology
[2] GIET University,Department of Chemical Engineering, School of Engineering and Technology
来源
International Journal of Environmental Science and Technology | 2023年 / 20卷
关键词
Lignocellulosic biomass; Pretreatment; Hydrolysis; Biofuel; Value-added products;
D O I
暂无
中图分类号
学科分类号
摘要
Lignocellulosic biomass (LCB) is plentifully and naturally available carbon source produced mostly from agro, food and food processing industries with a global estimate of 1.3 billion tonnes per year. Since LCB is inexpensive and considered as waste, it opens an avenue for cost-effective alternate source of energy. Lignocellulosic biomass can be effectively and efficiently converted to biofuels (e.g. bioethanol, biodiesel and biogas) and value-added products like organic acids, enzymes, biopolymers, biochar etc. However, the bottleneck in using lignocellulosic biomass on industrial scale is its structural complexity and recalcitrance nature. Thus, pretreatment of biomass is an essential step for efficient delignification of biomass. This process separates cellulose and hemicellulose from lignin of the complex polymer matrix. Thereby, reduces the size of the matrix and increases the surface area of cellulose and hemicelluloses to be accessible for enzymes and microbes for hydrolysis and fermentation respectively. The pretreatment process includes physical, chemical, physicochemical or biological. Mechanical milling, ultrasound and microwave radiation as physical; Acid/alkaline hydrolysis, organosolv, ionic liquids and ozonolysis as chemical; ammonia fiber explosion, CO2 explosion steam explosion, liquid hot water treatment as physicochemical methods are established. The use of certain species of bacteria, fungus and yeast in biological methods of pretreatment is yet to establish on large scale.
引用
收藏
页码:6929 / 6944
页数:15
相关论文
共 50 条
  • [31] New Generation Urban Biorefinery toward Complete Utilization of Waste Derived Lignocellulosic Biomass for Biofuels and Value-Added Products
    Dong, Chengyu
    Wang, Ying
    Wang, Huaimin
    Lin, Carol Sze Ki
    Hsu, Hsien-Yi
    Leu, Shao-Yuan
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 918 - 925
  • [32] Valorisation of lignocellulosic biomass to value-added products: Paving the pathway towards low-carbon footprint
    Velvizhi, G.
    Goswami, Chandamita
    Shetti, Nagaraj P.
    Ahmad, Ejaz
    Pant, Kamal Kishore
    Aminabhavi, Tejraj M.
    FUEL, 2022, 313
  • [33] Extraction, Isolation, and Purification of Value-Added Chemicals from Lignocellulosic Biomass
    Chaturvedi, Tanmay
    Hulkko, Laura Sini Sofia
    Fredsgaard, Malthe
    Thomsen, Mette Hedegaard
    PROCESSES, 2022, 10 (09)
  • [34] Advances in machine learning for high value-added applications of lignocellulosic biomass
    Ge, Hanwen
    Zheng, Jun
    Xu, Huanfei
    BIORESOURCE TECHNOLOGY, 2023, 369
  • [35] Biomass pyrolysis technologies for value-added products: a state-of-the-art review
    Amenaghawon, Andrew N.
    Anyalewechi, Chinedu L.
    Okieimen, Charity O.
    Kusuma, Heri Septya
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2021, 23 (10) : 14324 - 14378
  • [36] Mechanical Pretreatment of Lignocellulosic Biomass For Biofuel Production
    Kamarludin, Siti Norsyarahah Che
    Jainal, Muhammad Syafiq
    Azizan, Amizon
    Safaai, Nor Sharliza Mohd
    Daud, Ahmad Rafizan Mohamad
    PROCESS AND ADVANCED MATERIALS ENGINEERING, 2014, 625 : 838 - 841
  • [37] How to effectively produce value-added products from microalgae?
    Maghzian, Ali
    Aslani, Alireza
    Zahedi, Rahim
    Yaghoubi, Milad
    RENEWABLE ENERGY, 2023, 204 : 262 - 276
  • [38] Chemical, physical and biological methods to convert lignocellulosic waste into value-added products. A review
    Selvakumar Periyasamy
    V. Karthik
    P. Senthil Kumar
    J. Beula Isabel
    Tatek Temesgen
    B. M. Hunegnaw
    B. B. Melese
    Badr A. Mohamed
    Dai-Viet Nguyen Vo
    Environmental Chemistry Letters, 2022, 20 : 1129 - 1152
  • [39] Chemical, physical and biological methods to convert lignocellulosic waste into value-added products. A review
    Periyasamy, Selvakumar
    Karthik, V.
    Senthil Kumar, P.
    Isabel, J. Beula
    Temesgen, Tatek
    Hunegnaw, B. M.
    Melese, B. B.
    Mohamed, Badr A.
    Vo, Dai-Viet Nguyen
    ENVIRONMENTAL CHEMISTRY LETTERS, 2022, 20 (02) : 1129 - 1152
  • [40] Sugarcane bagasse into value-added products: a review
    Shabbirahmed, Asma Musfira
    Haldar, Dibyajyoti
    Dey, Pinaki
    Patel, Anil Kumar
    Singhania, Reeta Rani
    Dong, Cheng-Di
    Purkait, Mihir Kumar
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (42) : 62785 - 62806