Finite dimensional semigroup quadratic algebras with the minimal number of relations

被引:0
作者
Natalia Iyudu
Stanislav Shkarin
机构
[1] Max-Planck-Institut für Mathematik,Department of Pure Mathematics
[2] Queens’s University Belfast,undefined
来源
Monatshefte für Mathematik | 2012年 / 168卷
关键词
Quadratic algebras; Semigroup algebras; Word combinatorics; Golod–Shafarevich theorem; Anick’s conjecture; Hilbert series; 05A05; 17A45; 16S37; 16N40; 20M05;
D O I
暂无
中图分类号
学科分类号
摘要
A quadratic semigroup algebra is an algebra over a field given by the generators x1, . . . , xn and a finite set of quadratic relations each of which either has the shape xjxk = 0 or the shape xjxk = xlxm. We prove that a quadratic semigroup algebra given by n generators and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d\leq \frac{n^2+n}{4}}$$\end{document} relations is always infinite dimensional. This strengthens the Golod–Shafarevich estimate for the above class of algebras. Our main result however is that for every n, there is a finite dimensional quadratic semigroup algebra with n generators and δn relations, where δn is the first integer greater than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{n^2+n}{4}}$$\end{document} . That is, the above Golod–Shafarevich-type estimate for semigroup algebras is sharp.
引用
收藏
页码:239 / 252
页数:13
相关论文
共 19 条
  • [1] Anick D.(1982)Noncommutative graded algebras and their Hilbert series J. Algebra 78 120-140
  • [2] Cameron P.(2007)Graphs of relations and Hilbert series J. Symb. Comput. 42 1066-1078
  • [3] Iyudu N.(2007)Noncommutative complete intersections and matrix integrals Pure Appl. Math. Q. 3 107-151
  • [4] Etingof P.(1964)On the class field tower (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 28 261-272
  • [5] Ginzburg V.(1964)On nil algebras and residually finite Izv. Akad. Nauk SSSR Ser. Mat. 28 273-276
  • [6] Golod E.(2011)-groups Proc. R. Soc. Edinb. 141A 1-21
  • [7] Shafarevich I.(2007)Minimal Hilbert series for quadratic algebras and Anick’s conjecture J. Am. Math. Soc. 20 989-1001
  • [8] Golod E.(2000)An infinite dimensional affine nil algebra with finite Gelfand– Kirillov dimension J. Algebra 223 85-100
  • [9] Iyudu N.(1992)The entropy of graded algebras Sel. Math. Sov. 11 293-315
  • [10] Shkarin S.(1965)Algebras with quadratic relations Izv. Akad. Nauk SSSR Ser. Mat. 29 209-214