共 11 条
New cube root algorithm based on the third order linear recurrence relations in finite fields
被引:0
|作者:
Gook Hwa Cho
Namhun Koo
Eunhye Ha
Soonhak Kwon
机构:
[1] Sungkyunkwan University,Department of Mathematics
来源:
Designs, Codes and Cryptography
|
2015年
/
75卷
关键词:
Finite field;
Cube root;
Linear recurrence relation;
Tonelli–Shanks algorithm;
Cipolla–Lehmer algorithm;
Adleman–Manders–Miller algorithm;
11T06;
11Y16;
68W40;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we present a new cube root algorithm in the finite field Fq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {F}_{q}$$\end{document} with q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q$$\end{document} a power of prime, which extends the Cipolla–Lehmer type algorithms (Cipolla, Un metodo per la risolutione della congruenza di secondo grado, 1903; Lehmer, Computer technology applied to the theory of numbers, 1969). Our cube root method is inspired by the work of Müller (Des Codes Cryptogr 31:301–312, 2004) on the quadratic case. For a given cubic residue c∈Fq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c \in \mathbb {F}_{q}$$\end{document} with q≡1(mod9)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q \equiv 1 \pmod {9}$$\end{document}, we show that there is an irreducible polynomial f(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(x)$$\end{document} with root α∈Fq3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha \in \mathbb {F}_{q^{3}}$$\end{document} such that Trαq2+q-29\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Tr\left( \alpha ^{\frac{q^{2}+q-2}{9}}\right) $$\end{document} is a cube root of c\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c$$\end{document}. Consequently we find an efficient cube root algorithm based on the third order linear recurrence sequences arising from f(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(x)$$\end{document}. The complexity estimation shows that our algorithm is better than the previously proposed Cipolla–Lehmer type algorithms.
引用
收藏
页码:483 / 495
页数:12
相关论文