New cube root algorithm based on the third order linear recurrence relations in finite fields

被引:0
|
作者
Gook Hwa Cho
Namhun Koo
Eunhye Ha
Soonhak Kwon
机构
[1] Sungkyunkwan University,Department of Mathematics
来源
Designs, Codes and Cryptography | 2015年 / 75卷
关键词
Finite field; Cube root; Linear recurrence relation; Tonelli–Shanks algorithm; Cipolla–Lehmer algorithm; Adleman–Manders–Miller algorithm; 11T06; 11Y16; 68W40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a new cube root algorithm in the finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q}$$\end{document} with q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} a power of prime, which extends the Cipolla–Lehmer type algorithms (Cipolla, Un metodo per la risolutione della congruenza di secondo grado, 1903; Lehmer, Computer technology applied to the theory of numbers, 1969). Our cube root method is inspired by the work of Müller (Des Codes Cryptogr 31:301–312, 2004) on the quadratic case. For a given cubic residue c∈Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c \in \mathbb {F}_{q}$$\end{document} with q≡1(mod9)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \equiv 1 \pmod {9}$$\end{document}, we show that there is an irreducible polynomial f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)$$\end{document} with root α∈Fq3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \mathbb {F}_{q^{3}}$$\end{document} such that Trαq2+q-29\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Tr\left( \alpha ^{\frac{q^{2}+q-2}{9}}\right) $$\end{document} is a cube root of c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document}. Consequently we find an efficient cube root algorithm based on the third order linear recurrence sequences arising from f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)$$\end{document}. The complexity estimation shows that our algorithm is better than the previously proposed Cipolla–Lehmer type algorithms.
引用
收藏
页码:483 / 495
页数:12
相关论文
共 11 条