New cube root algorithm based on the third order linear recurrence relations in finite fields

被引:0
|
作者
Gook Hwa Cho
Namhun Koo
Eunhye Ha
Soonhak Kwon
机构
[1] Sungkyunkwan University,Department of Mathematics
来源
Designs, Codes and Cryptography | 2015年 / 75卷
关键词
Finite field; Cube root; Linear recurrence relation; Tonelli–Shanks algorithm; Cipolla–Lehmer algorithm; Adleman–Manders–Miller algorithm; 11T06; 11Y16; 68W40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a new cube root algorithm in the finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q}$$\end{document} with q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document} a power of prime, which extends the Cipolla–Lehmer type algorithms (Cipolla, Un metodo per la risolutione della congruenza di secondo grado, 1903; Lehmer, Computer technology applied to the theory of numbers, 1969). Our cube root method is inspired by the work of Müller (Des Codes Cryptogr 31:301–312, 2004) on the quadratic case. For a given cubic residue c∈Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c \in \mathbb {F}_{q}$$\end{document} with q≡1(mod9)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \equiv 1 \pmod {9}$$\end{document}, we show that there is an irreducible polynomial f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)$$\end{document} with root α∈Fq3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \mathbb {F}_{q^{3}}$$\end{document} such that Trαq2+q-29\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Tr\left( \alpha ^{\frac{q^{2}+q-2}{9}}\right) $$\end{document} is a cube root of c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c$$\end{document}. Consequently we find an efficient cube root algorithm based on the third order linear recurrence sequences arising from f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)$$\end{document}. The complexity estimation shows that our algorithm is better than the previously proposed Cipolla–Lehmer type algorithms.
引用
收藏
页码:483 / 495
页数:12
相关论文
共 11 条
  • [1] New cube root algorithm based on the third order linear recurrence relations in finite fields
    Cho, Gook Hwa
    Koo, Namhun
    Ha, Eunhye
    Kwon, Soonhak
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 75 (03) : 483 - 495
  • [2] Second order linear sequence subgroups in finite fields
    Brison, Owen J.
    Nogueira, J. Eurico
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (02) : 277 - 290
  • [3] An Algorithm for Computing Minimal Bidirectional Linear Recurrence Relations
    Salagean, Ana
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1746 - 1750
  • [4] An Algorithm for Computing Minimal Bidirectional Linear Recurrence Relations
    Salagean, Ana
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (10) : 4695 - 4700
  • [5] Second order linear sequence subgroups in finite fields-II
    Brison, Owen J.
    Nogueira, J. Eurico
    FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (01) : 40 - 53
  • [6] ON THE POCKLINGTON-PERALTA SQUARE ROOT ALGORITHM IN FINITE FIELDS
    Kim, Chang Heon
    Koo, Namhun
    Kwon, Soonhak
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (06) : 1523 - 1537
  • [7] On multiplicative order of elements in finite fields based on cyclotomic polynomials
    Popovych, Roman
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (02) : 47 - 52
  • [8] An Algorithm to Find Square Root of Quadratic Residues over Finite Fields using Primitive Elements
    Faisal
    Gazali, Wikaria
    DISCOVERY AND INNOVATION OF COMPUTER SCIENCE TECHNOLOGY IN ARTIFICIAL INTELLIGENCE ERA, 2017, 116 : 198 - 205
  • [9] A New Secret Sharing Scheme Based on Polynomials over Finite Fields
    Calkavur, Selda
    Sole, Patrick
    Bonnecaze, Alexis
    MATHEMATICS, 2020, 8 (08)
  • [10] A New Algorithm for Computing Branch Number of Non-Singular Matrices Over Finite Fields
    Mishra, P. R.
    Kumar, Yogesh
    Samanta, Susanta
    Gaur, Atul
    SECURITY AND CRYPTOGRAPHY FOR NETWORKS, PT II, SCN 2024, 2024, 14974 : 187 - 205