Conditions implying regularity of the three dimensional navier-stokes equation

被引:3
作者
Montgomery-Smith S. [1 ]
机构
[1] Department of Mathematics, University of Missouri, Columbia
基金
美国国家科学基金会;
关键词
Beale-Kato-Majda condition; Navier-Stokes equation; Orlicz norm; Prodi-Serrin condition; stochastic method; vorticity;
D O I
10.1007/s10492-005-0032-0
中图分类号
学科分类号
摘要
We obtain logarithmic improvements for conditions for regularity of the Navier-Stokes equation, similar to those of Prodi-Serrin or Beale-Kato-Majda. Some of the proofs make use of a stochastic approach involving Feynman-Kac-like inequalities. As part of our methods, we give a different approach to a priori estimates of Foias, Guillope and Temam. © 2005 Mathematical Institute, Academy of Sciences of Czech Republic.
引用
收藏
页码:451 / 464
页数:13
相关论文
共 50 条
[41]   No Existence and Smoothness of Solution of the Navier-Stokes Equation [J].
Dou, Hua-Shu .
ENTROPY, 2022, 24 (03)
[42]   On the p-adic Navier-Stokes equation [J].
Khrennikov, Andrei Yu. ;
Kochubei, Anatoly N. .
APPLICABLE ANALYSIS, 2020, 99 (08) :1425-1435
[43]   DYNAMICAL BEHAVIOR FOR THE SOLUTIONS OF THE NAVIER-STOKES EQUATION [J].
Li, Kuijie ;
Ozawa, Tohru ;
Wang, Baoxiang .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (04) :1511-1560
[44]   A lattice Boltzmann model for the Navier-Stokes equation [J].
Xu, Wenchao ;
Yan, Guangwu .
MICROPROCESSORS AND MICROSYSTEMS, 2023, 96
[45]   INTERNAL STABILIZATION BY NOISE OF THE NAVIER-STOKES EQUATION [J].
Barbu, Viorel ;
Da Prato, Giuseppe .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (01) :1-20
[46]   Quotients of Navier-Stokes equation on space curves [J].
Duyunova, Anna ;
Lychagin, Valentin ;
Tychkov, Sergey .
ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (04)
[47]   Navier-Stokes anisotropic equation in critical spaces [J].
Paicu, M .
REVISTA MATEMATICA IBEROAMERICANA, 2005, 21 (01) :179-235
[48]   Analysis of the Multi-Dimensional Navier-Stokes Equation by Caputo Fractional Operator [J].
Albalawi, Kholoud Saad ;
Mishra, Manvendra Narayan ;
Goswami, Pranay .
FRACTAL AND FRACTIONAL, 2022, 6 (12)
[49]   Global Stability of Vortex Solutions of the Two-Dimensional Navier-Stokes Equation [J].
Thierry Gallay ;
C. Eugene Wayne .
Communications in Mathematical Physics, 2005, 255 :97-129
[50]   Spatially-periodic steady solutions to the three-dimensional Navier-Stokes equation with the ABC-force [J].
Podvigina, OM .
PHYSICA D, 1999, 128 (2-4) :250-272