Conditions implying regularity of the three dimensional navier-stokes equation

被引:3
作者
Montgomery-Smith S. [1 ]
机构
[1] Department of Mathematics, University of Missouri, Columbia
基金
美国国家科学基金会;
关键词
Beale-Kato-Majda condition; Navier-Stokes equation; Orlicz norm; Prodi-Serrin condition; stochastic method; vorticity;
D O I
10.1007/s10492-005-0032-0
中图分类号
学科分类号
摘要
We obtain logarithmic improvements for conditions for regularity of the Navier-Stokes equation, similar to those of Prodi-Serrin or Beale-Kato-Majda. Some of the proofs make use of a stochastic approach involving Feynman-Kac-like inequalities. As part of our methods, we give a different approach to a priori estimates of Foias, Guillope and Temam. © 2005 Mathematical Institute, Academy of Sciences of Czech Republic.
引用
收藏
页码:451 / 464
页数:13
相关论文
共 50 条
[21]   OBSERVERS FOR COMPRESSIBLE NAVIER-STOKES EQUATION [J].
Apte, Amit ;
Auroux, Didier ;
Ramaswamy, Mythily .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (02) :1081-1104
[22]   The Navier-Stokes equation in noncylindrical domain [J].
Miranda, MM ;
Límaco, J .
COMPUTATIONAL & APPLIED MATHEMATICS, 1997, 16 (03) :247-265
[23]   Application of Navier-Stokes equation to lubrication [J].
Hong, YP ;
Chen, D ;
Kong, XM ;
Wang, JD .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 :58-63
[24]   RELAXATION METHOD FOR NAVIER-STOKES EQUATION [J].
De Oliveira, P. M. C. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2012, 23 (04)
[25]   Navier-Stokes equation with hereditary viscosity [J].
Barbu, V ;
Sritharan, SS .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (03) :449-461
[26]   Application of Navier-Stokes equation to lubrication [J].
HONG Yiping ;
CHEN Darong ;
KONG Xianmei ;
WANG Jiadao State Key Laboratory of Tribology .
Science China Mathematics, 2001, (S1) :58-63
[27]   A Regularity Criterion for the Navier-Stokes Equation Involving Only the Middle Eigenvalue of the Strain Tensor [J].
Miller, Evan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 235 (01) :99-139
[28]   A STOCHASTIC NAVIER-STOKES EQUATION FOR THE VORTICITY OF A TWO-DIMENSIONAL FLUID [J].
Kotelenez, Peter .
ANNALS OF APPLIED PROBABILITY, 1995, 5 (04) :1126-1160
[29]   On Some Regularity Criteria for Axisymmetric Navier-Stokes Equations [J].
Renclawowicz, Joanna ;
Zajaczkowski, Wojciech M. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2019, 21 (04)
[30]   Geometry of turbulent dissipation and the Navier-Stokes regularity problem [J].
Rafner, Janet ;
Grujic, Zoran ;
Bach, Christian ;
Baerentzen, Jakob Andreas ;
Gervang, Bo ;
Jia, Ruo ;
Leinweber, Scott ;
Misztal, Marek ;
Sherson, Jacob .
SCIENTIFIC REPORTS, 2021, 11 (01)