Density of Polynomial Elements in Invariant Subspaces of Entire Functions of Exponential Type

被引:0
作者
V. M. Trutnev
机构
[1] Krasnoyarsk State University,
来源
Mathematical Notes | 2004年 / 75卷
关键词
entire function; function of exponential type; translation invariant subspace; spectral synthesis; holomorphic function; Noetherian ring; primary ideal;
D O I
暂无
中图分类号
学科分类号
摘要
Translation invariant subspaces in the space of entire functions of exponential type of several complex variables are considered and conditions are presented under which the set of exponential polynomials is dense in such a space. In particular, necessary and sufficient conditions for the polynomial elements to be dense are obtained.
引用
收藏
页码:387 / 390
页数:3
相关论文
共 8 条
  • [1] Malgrange B.(1955)Existence et appoximation des solutions des équations aux derivées partielles et des équations de convolution Ann. Inst. Fourier, Grenoble 6 1-271
  • [2] Krivosheev A. S.(1992)Complex analysis and convolution operators Uspekhi Mat. Nauk 47 3-58
  • [3] Napalkov V. V.(1981)Spectral synthesis in some spaces of entire functions of exponential type Mat. Zametki 30 527-534
  • [4] Filippov V. N.(1975)Counterexamples to a problem of L. Schwartz Funktsional. Anal. i Prilozhen. 9 29-35
  • [5] Gurevich D. I.(1973)Subspaces of entire functions of exponential type that are translation invariant Sibirsk. Mat. Zh. 15 427-436
  • [6] Napalkov V. V.(1964)Primärzerlegung in Steinschen Algebren Math. Ann. 154 307-329
  • [7] Foster O.(1969)Noether—Lasker decomposition of coherent analytic subsheaves Trans. Amer. Math. Soc. 135 375-385
  • [8] Yum-Tong S.(undefined)undefined undefined undefined undefined-undefined