Gapless assembly of maize chromosomes using long-read technologies

被引:0
作者
Jianing Liu
Arun S. Seetharam
Kapeel Chougule
Shujun Ou
Kyle W. Swentowsky
Jonathan I. Gent
Victor Llaca
Margaret R. Woodhouse
Nancy Manchanda
Gernot G. Presting
David A. Kudrna
Magdy Alabady
Candice N. Hirsch
Kevin A. Fengler
Doreen Ware
Todd P. Michael
Matthew B. Hufford
R. Kelly Dawe
机构
[1] University of Georgia,Department of Genetics
[2] Iowa State University,Genome Informatics Facility
[3] Cold Spring Harbor Laboratory,Department of Ecology, Evolution, and Organismal Biology
[4] Iowa State University,Department of Plant Biology
[5] University of Georgia,Molecular Biosciences and Bioengineering
[6] Corteva Agriscience™,Arizona Genomics Institute, School of Plant Sciences
[7] USDA-ARS Corn Insects and Crop Genetics Research Unit,Georgia Genomics and Bioinformatics Core Laboratory
[8] University of Hawaii,Department of Agronomy and Plant Genetics
[9] University of Arizona,Informatics Department
[10] University of Georgia,undefined
[11] University of Minnesota,undefined
[12] USDA ARS NAA Robert W. Holley Center for Agriculture and Health,undefined
[13] Agricultural Research Service,undefined
[14] J. Craig Venter Institute,undefined
来源
Genome Biology | / 21卷
关键词
Gapless assembly; Maize genome; Knob structure; Meiotic drive; Long-read technology;
D O I
暂无
中图分类号
学科分类号
摘要
Creating gapless telomere-to-telomere assemblies of complex genomes is one of the ultimate challenges in genomics. We use two independent assemblies and an optical map-based merging pipeline to produce a maize genome (B73-Ab10) composed of 63 contigs and a contig N50 of 162 Mb. This genome includes gapless assemblies of chromosome 3 (236 Mb) and chromosome 9 (162 Mb), and 53 Mb of the Ab10 meiotic drive haplotype. The data also reveal the internal structure of seven centromeres and five heterochromatic knobs, showing that the major tandem repeat arrays (CentC, knob180, and TR-1) are discontinuous and frequently interspersed with retroelements.
引用
收藏
相关论文
共 273 条
[1]  
Nannas NJ(2015)Genetic and genomic toolbox of Zea mays Genetics 199 655-669
[2]  
Dawe RK(2017)Improved maize reference genome with single-molecule technologies Nature 546 524-527
[3]  
Jiao Y(2019)Widespread long-range cis-regulatory elements in the maize genome Nature Plants 5 1237-1249
[4]  
Peluso P(2013)Complex patterns of local adaptation in teosinte Genome Biol Evol 5 1594-1609
[5]  
Shi J(2019)Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement Nat Genet 51 1052-1059
[6]  
Liang T(2018)Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays PLoS Genet 14 4490-4494
[7]  
Stitzer MC(2009)Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons PLoS Genet 5 10785-10790
[8]  
Wang B(1981)Highly repeated DNA sequence limited to knob heterochromatin in maize Proc Natl Acad Sci U S A 78 839-50.e18
[9]  
Ricci William A.(1998)A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: are chromosome knobs megatransposons? Proc Natl Acad Sci U S A 95 145-154
[10]  
Lu Zefu(2018)A kinesin-14 motor activates neocentromeres to promote meiotic drive in maize Cell 173 1587-1592