Stability of the configurations of point vortices on a sphere

被引:0
作者
Meleshko V.V. [1 ]
Newton P.K. [2 ]
Ostrovs'kyi V.V. [1 ]
机构
[1] Kyiv National University, Kyiv
[2] University of South California, Los Angeles
关键词
Vortex; Vorticity; Vortex Ring; Relative Equilibrium; Equilibrium Configuration;
D O I
10.1007/s10958-010-0161-1
中图分类号
学科分类号
摘要
We study the motion of point vortices on a sphere and, using the methods of linear algebra, find the symmetric configurations of relative equilibrium. Furthermore, we give a catalog of symmetric configurations based on regular polyhedrons. Finally, we investigate the stability of the equilibrium configurations found. © 2010 Springer Science+Business Media, Inc.
引用
收藏
页码:603 / 619
页数:16
相关论文
共 34 条
  • [1] Alekseenko S.V., Kuibin P.A., Okulov V.L., An Introduction to the Theory of Concentrated Vortices, (2003)
  • [2] Bogomolov V.A., Vorticity dynamics on a sphere, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 6, pp. 57-65, (1977)
  • [3] Borisov A.V., Mamaev I.S., Mathematical Methods of the Dynamics of Vortex Structures, (2005)
  • [4] Borisov A.V., Gazizullina L.A., Ramodanov S.M., The thesis by E. Zermelo on the vortex hydrodynamics on a sphere, Nelin. Dyn., 4, pp. 497-513, (2008)
  • [5] Vasil'ev O.F., On one forgotten work by I. S. Gromeka, Prikl. Mat. Mekh., 15, pp. 261-263, (1951)
  • [6] Villat H., Leçons sur la Théorie des Tourbillons, (1930)
  • [7] Gromeka I.S., On the Vortex Motions of a Fluid on a Sphere, (1885)
  • [8] Sommerfeld A., Mechanics of Deformable Bodies, (1950)
  • [9] Kirchhoff G., Vorlesungen über Mathematische Physik, (1876)
  • [10] Kozlov V.V., General Theory of Vortices, (1998)