Reduction of a bi-Hamiltonian hierarchy on T∗U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*\mathrm{U}(n)$$\end{document} to spin Ruijsenaars–Sutherland models

被引:0
作者
L. Fehér
机构
[1] University of Szeged,Department of Theoretical Physics
[2] WIGNER RCP,Department of Theoretical Physics
[3] RMKI,undefined
关键词
Integrable systems; Spin Sutherland–Ruijsenaars model; Hamiltonian reduction; bi-Hamiltonian systems; 70H06; 37J15; 37K10;
D O I
10.1007/s11005-019-01252-1
中图分类号
学科分类号
摘要
We first exhibit two compatible Poisson structures on the cotangent bundle of the unitary group U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{U}(n)$$\end{document} in such a way that the invariant functions of the u(n)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {u}}(n)^*$$\end{document}-valued momenta generate a bi-Hamiltonian hierarchy. One of the Poisson structures is the canonical one and the other one arises from embedding the Heisenberg double of the Poisson–Lie group U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{U}(n)$$\end{document} into T∗U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*\mathrm{U}(n)$$\end{document}, and subsequently extending the embedded Poisson structure to the full cotangent bundle. We then apply Poisson reduction to the bi-Hamiltonian hierarchy on T∗U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^* \mathrm{U}(n)$$\end{document} using the conjugation action of U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{U}(n)$$\end{document}, for which the ring of invariant functions is closed under both Poisson brackets. We demonstrate that the reduced hierarchy belongs to the overlap of well-known trigonometric spin Sutherland and spin Ruijsenaars–Schneider-type integrable many-body models, which receive a bi-Hamiltonian interpretation via our treatment.
引用
收藏
页码:1057 / 1079
页数:22
相关论文
共 56 条
  • [21] Klimčík C(2004)A class of integrable spin Calogero–Moser systems Represent. Theory 8 243-71
  • [22] Fehér L(2003)Three integrable Hamiltonian systems connected with isospectral deformations Lett. Math. Phys. 63 55-785
  • [23] Klimčík C(2016)Double affine Hecke algebras and Calogero–Moser spaces J. Math. Sci. 213 769-405
  • [24] Fehér L(1986)Degenerate integrability of spin Calogero–Moser systems and the duality with the spin Ruijsenaars systems Ann. Phys. 170 370-68
  • [25] Pusztai BG(1975)Degenerately integrable systems Topology 14 63-1260
  • [26] Gibbons J(1985)A new class of integrable systems and its relation to solitons Publ. RIMS 21 1237-197
  • [27] Hermsen T(2004)Smooth functions invariant under the action of a compact Lie group Acta Appl. Math. 83 183-422
  • [28] Kazhdan D(1991)Dressing transformations and Poisson group actions Ann. Math. 134 375-347
  • [29] Kostant B(1997)A simple way of making a Hamiltonian system into a bi-Hamiltonian one Lett. Math. Phys. 41 333-262
  • [30] Sternberg S(1997)Stratified symplectic spaces and reduction Phys. Lett. A 225 253-2021