Reduction of a bi-Hamiltonian hierarchy on T∗U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*\mathrm{U}(n)$$\end{document} to spin Ruijsenaars–Sutherland models

被引:0
作者
L. Fehér
机构
[1] University of Szeged,Department of Theoretical Physics
[2] WIGNER RCP,Department of Theoretical Physics
[3] RMKI,undefined
关键词
Integrable systems; Spin Sutherland–Ruijsenaars model; Hamiltonian reduction; bi-Hamiltonian systems; 70H06; 37J15; 37K10;
D O I
10.1007/s11005-019-01252-1
中图分类号
学科分类号
摘要
We first exhibit two compatible Poisson structures on the cotangent bundle of the unitary group U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{U}(n)$$\end{document} in such a way that the invariant functions of the u(n)∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {u}}(n)^*$$\end{document}-valued momenta generate a bi-Hamiltonian hierarchy. One of the Poisson structures is the canonical one and the other one arises from embedding the Heisenberg double of the Poisson–Lie group U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{U}(n)$$\end{document} into T∗U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*\mathrm{U}(n)$$\end{document}, and subsequently extending the embedded Poisson structure to the full cotangent bundle. We then apply Poisson reduction to the bi-Hamiltonian hierarchy on T∗U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^* \mathrm{U}(n)$$\end{document} using the conjugation action of U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{U}(n)$$\end{document}, for which the ring of invariant functions is closed under both Poisson brackets. We demonstrate that the reduced hierarchy belongs to the overlap of well-known trigonometric spin Sutherland and spin Ruijsenaars–Schneider-type integrable many-body models, which receive a bi-Hamiltonian interpretation via our treatment.
引用
收藏
页码:1057 / 1079
页数:22
相关论文
共 56 条
  • [1] Balog J(1990)Classical Phys. Lett. B 244 227-234
  • [2] Da̧browski L(1996)-matrix and exchange algebra in WZNW and Toda theories Phys. Lett. B 380 296-302
  • [3] Fehér L(1971)Affine Toda solitons and systems of Calogero–Moser type J. Math. Phys. 12 419-436
  • [4] Braden HW(2017)Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials J. Geom. Phys. 121 413-437
  • [5] Hone NW(1995)Multiplicative quiver varieties and generalised Ruijsenaars–Schneider models Duke Math. J. 80 59-90
  • [6] Calogero F(1998)Spherical functions on affine Lie groups Commun. Math. Phys. 192 77-120
  • [7] Chalykh O(1998)Geometry and classification of solutions of the classical dynamical Yang–Baxter equation Commun. Math. Phys. 197 303-324
  • [8] Fairon M(2017)Bihamiltonian geometry, Darboux coverings, and linearization of the KP hierarchy J. Geom. Phys. 118 126-137
  • [9] Etingof PI(2019)Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system Nonlinearity 32 4377-4394
  • [10] Frenkel IB(2009)Bi-Hamiltonian structure of a dynamical system introduced by Braden and Hone Lett. Math. Phys. 87 125-138