Non-vanishing of automorphic L-functions of prime power level

被引:0
作者
Olga Balkanova
Dmitry Frolenkov
机构
[1] Far Eastern Branch of the Russian Academy of Sciences,Institute for Applied Mathematics
[2] Steklov Mathematical Institute of Russian Academy of Sciences,undefined
来源
Monatshefte für Mathematik | 2018年 / 185卷
关键词
L-functions; Primitive forms; Non-vanishing; Prime power level; Primary 11F12;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that at the minimum 25%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$25\%$$\end{document} of L-values associated to holomorphic newforms of fixed even integral weight and large prime power level do not vanish at the critical point.
引用
收藏
页码:17 / 41
页数:24
相关论文
共 19 条
[1]  
Akbary A(1999)Non-vanishing of weight J. Ramanujan Math. Soc. 14 37-54
[2]  
Balkanova O(2016) modular Proc. Steklov Inst. Math. 294 13-46
[3]  
Frolenkov D(1996)-functions with large level Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 226 14-36
[4]  
Bykovskii VA(2015)A uniform asymptotic formula for the second moment of primitive Doklady Math. 92 1-4
[5]  
Bykovskii VA(1995)-functions on the critical line Invent. Math. 119 165-174
[6]  
Frolenkov DA(2005)A trace formula for the scalar product of Hecke series and its applications Canad. Math. Bull. 48 535-546
[7]  
Duke W(2011)On the second moment of J. Number Theory 131 343-362
[8]  
Ellenberg JS(2000)-series of holomorphic cusp forms on the critical line Israel J. Math. 120 155-177
[9]  
Ichihara Y(2015)The critical order of vanishing of automorphic J. Aust. Math. Soc. 99 207-236
[10]  
Iwaniec H(2000)-functions with large level Acta Arith. 93 157-176