Groups Acting on Dendrons

被引:5
作者
Malyutin A.V. [1 ]
机构
[1] St.Petersburg Department of Steklov Mathematical Institute, St.Petersburg
关键词
Automorphism Group; Compact Space; Cayley Graph; Hyperbolic Group; Dendritic Space;
D O I
10.1007/s10958-016-2688-2
中图分类号
学科分类号
摘要
A dendron is defined as a continuum (a nonempty, connected, compact Hausdorff space) in which every two distinct points have a separation point. It is proved that if a group G acts on a dendron D by homeomorphisms, then either D contains a G-invariant subset consisting of one or two points or G contains a free noncommutative subgroup and, furthermore, the action is strongly proximal. © 2016, Springer Science+Business Media New York.
引用
收藏
页码:558 / 565
页数:7
相关论文
共 32 条
[1]  
Adeleke S.A., Neumann P.M., “Relations related to betweenness: their structure and automorphisms,” Mem. Amer. Math. Soc., 623, (1998)
[2]  
Anosov D.V., On the contribution of N.N. Bogolyubov to the theory of dynamical systems, Russ. Math. Surv., 49, pp. 1-18, (1994)
[3]  
Auslander J., Flows M., Extensions T., North-Holland Math. Stud., 153, North-Holland, (1988)
[4]  
Bogolyubov N.N., On some ergodic properties of continuous transformation groups, Nauch. Zap. Kiev. Univ. Fiz.-Mat. Sb., 4, pp. 45-53, (1939)
[5]  
Benyash-Krivetz V.V., Suin H., Groups With Periodic Paired Relations [in Russian], (2010)
[6]  
Bowditch B.H., “Treelike structures arising from continua and convergence groups,” Mem. Amer. Math. Soc., 662, (1999)
[7]  
Bowditch B.H., Crisp J., Archimedean actions on median pretrees, Math. Proc. Camb. Phil. Soc., 130, pp. 383-400, (2001)
[8]  
de la Harpe P., Grigorchuk R.I., Ceccherini-Silberstein T., Amenability and paradoxical decompositions for pseudogroups and for discrete metric spaces, Proc. Steklov Inst. Math., 224, pp. 57-97, (1999)
[9]  
Charatonik J.J., Charatonik W.J., Dendrites, Aportaciones Mat. Comun., 22, pp. 227-253, (1998)
[10]  
Chiswell, (2001)