Some geometric results on K-theory with Z/kZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}/k{\mathbb{Z}}$$\end{document}-coefficients

被引:0
|
作者
Adnane Elmrabty
机构
[1] Ibn Tofaïl University,Department of Mathematics
关键词
-K-theory; -Invariant; Chern character; Direct image; Spectral flow; 19L10; 58J28; 58J30;
D O I
10.1007/s40863-020-00179-z
中图分类号
学科分类号
摘要
We establish some geometric results on K-theory with coefficients in Z/kZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}/k{\mathbb{Z}}$$\end{document}. The first one is a new proof of the Atiyah–Patodi–Singer mod k index theorem (Math Proc Camb Philos Soc 79:71–99, 1976) in the case of Dirac operators, i.e. in a geometric situation. The second one is a Grothendieck–Riemann–Roch theorem for Z/kZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}/k{\mathbb{Z}}$$\end{document}-K-theory.
引用
收藏
页码:562 / 579
页数:17
相关论文
共 26 条