The Moduli Space of Riemann Surfaces of Large Genus

被引:0
作者
Alastair Fletcher
Jeremy Kahn
Vladimir Markovic
机构
[1] Northern Illinois University,Department of Mathematical Sciences
[2] Brown University,Department of Mathematics
[3] Caltech,Department of Mathematics
来源
Geometric and Functional Analysis | 2013年 / 23卷
关键词
Modulus Space; Riemann Surface; Supremum Norm; Injectivity Radius; Covering Number;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}_{g,\epsilon}}$$\end{document} be the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon}$$\end{document} -thick part of the moduli space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}_g}$$\end{document} of closed genus g surfaces. In this article, we show that the number of balls of radius r needed to cover \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{M}_{g,\epsilon}}$$\end{document} is bounded below by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(c_1g)^{2g}}$$\end{document} and bounded above by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(c_2g)^{2g}}$$\end{document}, where the constants c1, c2depend only on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon}$$\end{document} and r, and in particular not on g. Using this counting result we prove that there are Riemann surfaces of arbitrarily large injectivity radius that are not close (in the Teichmüller metric) to a finite cover of a fixed closed Riemann surface. This result illustrates the sharpness of the Ehrenpreis conjecture.
引用
收藏
页码:867 / 887
页数:20
相关论文
共 8 条
[1]  
Bishop C.J.(2002)Quasiconformal mappings of Revista Matemática Iberoamericana, 18 627-652
[2]  
Brooks R.(2001)-pieces. The Journal of Mathematical Analysis 83 243-258
[3]  
Makover E.(2010)Riemann surfaces with large first eigenvalue Transactions of The American Mathematical Society 362 2507-2523
[4]  
Fletcher A.(2012)On asymptotic Teichmüller space. Geometry and Topology, 16 601-624
[5]  
Kahn J.(2002)Counting essential surfaces in a closed hyperbolic 3-manifold The Journal of the London Mathematical Society 66 623-640
[6]  
Markovic V.(undefined)Character theory of symmetric groups and subgroup growth of surface groups undefined undefined undefined-undefined
[7]  
Muller T.(undefined)undefined undefined undefined undefined-undefined
[8]  
Puchta J.-C.(undefined)undefined undefined undefined undefined-undefined