Stochastic Completeness and the Omori–Yau Maximum Principle

被引:0
作者
Albert Borbély
机构
[1] Kuwait University,Department of Mathematics, Faculty of Science
来源
The Journal of Geometric Analysis | 2017年 / 27卷
关键词
Omori–Yau maximum principle; Stochastic completeness; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
A Riemannian manifold M is said to satisfy the Omori–Yau maximum principle if for any C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} bounded function g:M→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g:M\rightarrow {\mathbb {R}}$$\end{document} there is a sequence xn∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_n\in M$$\end{document}, such that limn→∞g(xn)=supMg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{n\rightarrow \infty }g(x_n)=\sup _M g$$\end{document}, limn→∞|∇g(xn)|=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lim _{n\rightarrow \infty }|\nabla g(x_n)|=0$$\end{document} and lim supn→∞Δg(xn)≤0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{n\rightarrow \infty }\Delta g(x_n)\le 0$$\end{document}. On the other hand, M is said to satisfy the Weak-Omori–Yau maximum principle if for any C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} bounded function g:M→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g:M\rightarrow {\mathbb {R}}$$\end{document} there is a sequence xn∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_n\in M$$\end{document}, such that limn→∞g(xn)=supMg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{n\rightarrow \infty }g(x_n)=\sup _M g$$\end{document} and lim supn→∞Δg(xn)≤0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{n\rightarrow \infty }\Delta g(x_n)\le 0$$\end{document}. It is easy to construct non-complete examples which are weak-Omori–Yau but not Omori–Yau. In this note, a complete example is constructed.
引用
收藏
页码:3228 / 3239
页数:11
相关论文
共 12 条
[1]  
Borbély A(2012)A remark on the Omori–Yau maximum principle Kuwait J. Sci. 39 45-56
[2]  
Khas’minskii RZ(1960)Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations Theory Probab. Appl. 5 196-214
[3]  
Kim K(2007)On the Omori–Yau almost maximum principle J. Math. Anal. Appl. 335 332-340
[4]  
Lee H(1967)Isometric immersions of Riemannian manifolds J. Math. Soc. Jpn. 19 205-214
[5]  
Omori H(2003)A remark on the maximum principle and stochastic completeness Proc. Am. Math. Soc. 131 1283-1288
[6]  
Pigola S(1995)On the Omori–Yau maximum principle and its application to differential equations and geometry J. Funct. Anal. 134 486-510
[7]  
Rigoli M(1975)Harmonic functions on complete Riemannian Manifolds Commun. Pure Appl. Math. 28 201-228
[8]  
Setti AG(undefined)undefined undefined undefined undefined-undefined
[9]  
Ratti A(undefined)undefined undefined undefined undefined-undefined
[10]  
Rigoli M(undefined)undefined undefined undefined undefined-undefined