Covariant Derivative of the Curvature Tensor of Kenmotsu Manifolds

被引:0
作者
Vahid Pirhadi
机构
[1] University of Kashan,Department of Pure Mathematics, Faculty of Mathematics
来源
Bulletin of the Iranian Mathematical Society | 2022年 / 48卷
关键词
Kenmotsu manifolds; -Einstein manifolds; Curvature-like tensors; Chaki ; -pseudo-symmetric manifolds; 53D15; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we define a (1, 3)-tensor field T(X, Y)Z on Kenmotsu manifolds and give a necessary and sufficient condition for T to be a curvature-like tensor. Next, we present some properties related to the curvature-like tensor T and prove that M2m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{2m+1}$$\end{document} is an η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein–Kenmotsu manifold if and only if ∑j=1mT(φ(ej),ej)X=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum ^{m}_{j=1}T( \varphi (e_j), e_j) X = 0$$\end{document}. Besides, we define a (1, 4)-tensor field t on the Kenmotsu manifold M which determines when M is a Chaki T-pseudo-symmetric manifold. Then, we obtain a formula for the covariant derivative of the curvature tensor of Kenmotsu manifold M. We also find some conditions under which an η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein–Kenmotsu manifold is a Chaki T-pseudo-symmetric. Finally, we give an example to verify our results and prove that every three-dimensional Kenmotsu manifold is a generalized pseudo-symmetric manifold.
引用
收藏
页码:1 / 18
页数:17
相关论文
共 13 条
  • [1] Tanno S(1969)The automorphism groups of almost contact Riemannian manifolds Tohoku Math. J. 2 21-38
  • [2] Kenmotsu K(1972)A class of almost contact Riemannian manifolds Tohoku Math. J. 2 93-103
  • [3] De UC(2004)On 3-dimensional Kenmotsu manifolds Indian J. Pure Appl. Math. 35 159-166
  • [4] Pathak G(2018)External geometry of submanifolds in conformal Kenmotsu manifolds Bull. Iran. Math. Soc. 44 1387-1404
  • [5] Abdi R(1981)Almost contact structures and curvature tensors Kodai Math. J. 4 1-27
  • [6] Abedi E(1992)On weakly symmetric and weakly projective symmetric Riemannian manifolds Coll. Math. Soc. J. Bolyai. 56 663-670
  • [7] Janssens D(2006)On weakly symmetric Kenmotsu manifolds Differ. Geom. Dyn. Syst. 8 204-209
  • [8] Vanhecke L(1971)On the spaces of generalized curvature tensor fields and second fundamental forms Osaka J. Math. 8 21-28
  • [9] Tamassy L(1979)Generalized recurrent spaces Indian J. Pure Appl. Math. 10 1508-1513
  • [10] Binh TQ(undefined)undefined undefined undefined undefined-undefined