Infinite number of solutions for some elliptic eigenvalue problems of Kirchhoff-type with non-homogeneous material

被引:0
作者
Baoqiang Yan
Donal O’Regan
Ravi P. Agarwal
机构
[1] Shandong Normal University,School of Mathematics and Statistics
[2] National University of Ireland,School of Mathematics, Statistics and Applied Mathematics
[3] Texas A and M University-Kingsville,Department of Mathematics
来源
Boundary Value Problems | / 2021卷
关键词
Kirchhoff equations; Sign-changing solution; Variational method; 35J60; 35B32; 35J25; 35J62;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, using variational method, we study the existence of an infinite number of solutions (some are positive, some are negative, and others are sign-changing) for a non-homogeneous elliptic Kirchhoff equation with a nonlinear reaction term.
引用
收藏
相关论文
共 69 条
[1]  
Alves C.O.(2005)Positive solutions for a quasilinear elliptic equation of Kirchhoff type Comput. Math. Appl. 49 85-93
[2]  
Corrêa F.J.S.A.(2012)Nonlinear perturbations of a periodic Kirchhoff equation in Nonlinear Anal. 75 2750-2759
[3]  
Ma T.F.(1996)On the existence of sign changing solutions for semilinear Dirichlet problem Topol. Methods Nonlinear Anal. 7 115-131
[4]  
Alves C.O.(1997)A sign-changing solution for a superlinear Dirichlet problem Rocky Mt. J. Math. 27 1041-1053
[5]  
Figueiredo G.M.(2017)Ground state sign-changing solutions for asymptotically 3-linear Kirchhoff-type problems Complex Var. Elliptic Equ. 62 1093-1116
[6]  
Bartsch T.(2012)Multiple solutions for a class of Kirchhoff type problems with concave nonlinearity Nonlinear Differ. Equ. Appl. 19 521-537
[7]  
Wang Z.Q.(1989)On spectral asymptotics and bifurcation for elliptic operators with odd superlinearity term Nonlinear Anal., Theory Methods Appl. 13 871-878
[8]  
Castro A.(1994)Existence of changing sign solutions for some semilinear problems with jumping nonlinearities at zero Proc. R. Soc. Edinb. 124A 1165-1176
[9]  
Cossio J.(2013)Existence of positive solution for a Kirchhoff problem type with critical growth via truncation argument J. Math. Anal. Appl. 401 706-713
[10]  
Neuberger M.(2014)Study of a nonlinear Kirchhoff equation with non-homogeneous material J. Math. Anal. Appl. 416 597-608