A family of equivalent norms for Lebesgue spaces

被引:0
|
作者
Alberto Fiorenza
Pankaj Jain
机构
[1] Università di Napoli Federico II,Dipartimento di Architettura
[2] Istituto per le Applicazioni del Calcolo “Mauro Picone”,Department of Mathematics
[3] sezione di Napoli Consiglio Nazionale delle Ricerche,undefined
[4] South Asian University,undefined
来源
Archiv der Mathematik | 2021年 / 116卷
关键词
Integral inequalities; Lebesgue spaces; Weighted Lebesgue spaces; Banach function space norms; G; spaces; Absolutely continuous functions; Monotone functions; 26D10; 26D15; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
If ψ:[0,ℓ]→[0,∞[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi :[0,\ell ]\rightarrow [0,\infty [$$\end{document} is absolutely continuous, nondecreasing, and such that ψ(ℓ)>ψ(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (\ell )>\psi (0)$$\end{document}, ψ(t)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (t)>0$$\end{document} for t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t>0$$\end{document}, then for f∈L1(0,ℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in L^1(0,\ell )$$\end{document}, we have ‖f‖1,ψ,(0,ℓ):=∫0ℓψ′(t)ψ(t)2∫0tf∗(s)ψ(s)dsdt≈∫0ℓ|f(x)|dx=:‖f‖L1(0,ℓ),(∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert f\Vert _{1,\psi ,(0,\ell )}:=\int \limits _0^\ell \frac{\psi '(t)}{\psi (t)^2}\int \limits _0^tf^*(s)\psi (s)dsdt\approx \int \limits _0^\ell |f(x)|dx=:\Vert f\Vert _{L^1(0,\ell )},\quad (*) \end{aligned}$$\end{document}where the constant in ≳\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ > rsim $$\end{document} depends on ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} and ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}. Here by f∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^*$$\end{document} we denote the decreasing rearrangement of f. When applied with f replaced by |f|p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|f|^p$$\end{document}, 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document}, there exist functions ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} so that the inequality ‖|f|p‖1,ψ,(0,ℓ)≤‖|f|p‖L1(0,ℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert |f|^p\Vert _{1,\psi ,(0,\ell )}\le \Vert |f|^p\Vert _{L^1(0,\ell )}$$\end{document} is not rougher than the classical one-dimensional integral Hardy inequality over bounded intervals (0,ℓ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\ell )$$\end{document}. We make an analysis on the validity of (∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(*)$$\end{document} under much weaker assumptions on the regularity of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}, and we get a version of Hardy’s inequality which generalizes and/or improves existing results.
引用
收藏
页码:179 / 192
页数:13
相关论文
共 50 条
  • [1] A family of equivalent norms for Lebesgue spaces
    Fiorenza, Alberto
    Jain, Pankaj
    ARCHIV DER MATHEMATIK, 2021, 116 (02) : 179 - 192
  • [2] Grand and small norms in Lebesgue spaces
    Berezhnoi, Evgeny
    Karapetyants, Alexey
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (02) : 725 - 741
  • [3] EQUIVALENT NORMS FOR SOBOLEV SPACES
    ADAMS, RA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 24 (01) : 63 - &
  • [4] ON THE EQUIVALENT BASES OF COSINES IN GENERALIZED LEBESGUE SPACES
    Kasumov, Zaur A.
    Hashimov, Chingiz M.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2015, 41 (02): : 70 - 76
  • [5] EQUIVALENT NORMS IN SOBOLEV SPACES AND NORMS OF EXTENSION OPERATORS
    MIKHLIN, SG
    SIBERIAN MATHEMATICAL JOURNAL, 1978, 19 (05) : 804 - 813
  • [6] Extreme values of operator norms in spaces with equivalent norms
    Goncharenko Yu.V.
    Journal of Mathematical Sciences, 1999, 97 (2) : 3917 - 3922
  • [7] EQUIVALENT NORMS ON SEPARABLE ASPLUND SPACES
    FINET, C
    SCHACHERMAYER, W
    STUDIA MATHEMATICA, 1989, 92 (03) : 275 - 283
  • [8] Equivalent norms in polynomial spaces and applications
    Araujo, Gustavo
    Jimenez-Rodriguez, P.
    Munoz-Fernandez, Gustavo A.
    Seoane-Sepulveda, Juan B.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (02) : 1200 - 1220
  • [9] A bridge connecting Lebesgue and Morrey spaces via Riesz norms
    Jin Tao
    Dachun Yang
    Wen Yuan
    Banach Journal of Mathematical Analysis, 2021, 15
  • [10] A New Approach to Grand and Small Norms in Discrete Lebesgue Spaces
    Berezhnoi, E. I.
    Karapetyants, A. N.
    MATHEMATICAL NOTES, 2023, 114 (5-6) : 1118 - 1133