On partial derivatives of multivariate Bernstein polynomials

被引:0
作者
Veretennikov A.Y. [1 ,2 ,3 ]
Veretennikova E.V. [4 ]
机构
[1] University of Leeds, Leeds
[2] Higher School of Economics, Moscow
[3] Institute for Information Transmission Problems, Moscow
[4] Moscow State Pedagogical University, Moscow
关键词
convergence; multivariate Bernstein polynomial; partial derivative;
D O I
10.3103/S1055134416040039
中图分类号
学科分类号
摘要
It is shown that Bernstein polynomials for a multivariate function converge to this function along with partial derivatives provided that the latter derivatives exist and are continuous. This result may be useful in some issues of stochastic calculus. © 2016, Allerton Press, Inc.
引用
收藏
页码:294 / 305
页数:11
相关论文
共 16 条
  • [1] Abel U., Ivan M., Asymptotic expansion of the multivariate Bernstein polynomials on a simplex, Approx. Theory Appl. N.S, 16, 3, (2000)
  • [2] Bernstein S.N., Démonstration du théorème deWeierstrass fondée sur le calcul des probabilités, Communications de la Sociétémathématique de Kharkow. 2-éme série, 13, 1, (1912)
  • [3] Bernstein S.N., Complement à l’article de E. Voronovskaja “Determination de la forme asymptotique de l’approximation des fonctions par les polynômes de S. Bernstein, Dokl. Akad. Nauk SSSR, Ser. A, 4, (1932)
  • [4] Chlodovsky I.N., On some properties of S.N. Bernstein polynomials, Proc. 1st All-Union congress of mathematics, Kharkov, 1930, (1936)
  • [5] Floater M.S., On the convergence of derivatives of Bernstein approximation, J. Approx. Theory, 134, 1, (2005)
  • [6] Krylov N.V., Introduction to the Theory of Random Processes, (2002)
  • [7] Lorentz G.G., Zur Theorie der Polynome von S. Bernstein, Mathematical Collections, 2, 44, (1937)
  • [8] Lorentz G.G., Bernstein Polynomials, (1986)
  • [9] Pop O.T., Voronovskaja-type theorem for certain GBS operators, Glas. Mat. Ser III, 43, 63, (2008)
  • [10] Popoviciu T., Sur l’approximation des fonctions convexes d’ordre supérieur, Mathematica, 10, (1935)