Logarithmic corrections to the entropy of rotating black holes and black strings in AdS5

被引:0
作者
Marina David
Alfredo González Lezcano
Jun Nian
Leopoldo A. Pando Zayas
机构
[1] University of Michigan,Leinweber Center for Theoretical Physics
[2] The Abdus Salam International Centre for Theoretical Physics,International Centre for Theoretical Physics Asia
[3] S.I.S.S.A.,Pacific
[4] International School for Advanced Studies,undefined
[5] INFN,undefined
[6] Sezione di Trieste,undefined
[7] Asia Pacific Center for Theoretical Physics,undefined
[8] INFN,undefined
[9] Sezione di Milano,undefined
[10] University of Chinese Academy of Sciences,undefined
来源
Journal of High Energy Physics | / 2022卷
关键词
AdS-CFT Correspondence; Black Holes; Gauge-Gravity Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate logarithmic corrections to the entropy of supersymmetric, rotating, asymptotically AdS5 black holes and black strings. Within the framework of the AdS/CFT correspondence, the entropy of these black objects is determined, on the field theory side, by the superconformal index and the refined topologically twisted index of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 supersymmetric Yang-Mills theory, respectively. We read off the logarithmic correction from those field-theoretic partition functions. On the gravity side, we take the near-horizon limit and apply the Kerr/CFT correspondence whose associated charged Cardy formula describes the degeneracy of states at subleading order and determines the logarithmic correction to the entropy. We find perfect agreement between these two approaches. Our results provide a window into precision microstate counting and demonstrate the efficacy of low-energy, symmetry-based approaches such as the Kerr/CFT correspondence for asymptotically AdS black objects under certain conditions.
引用
收藏
相关论文
共 180 条
[1]  
Bekenstein JD(1973) 4 Phys. Rev. D 7 2333-undefined
[2]  
Bardeen JM(1973) = 4 Commun. Math. Phys. 31 161-undefined
[3]  
Carter B(1974) 5 Phys. Rev. D 9 3292-undefined
[4]  
Hawking SW(1976) = 2 Phys. Rev. D 13 191-undefined
[5]  
Bekenstein JD(1996)6 Phys. Lett. B 379 99-undefined
[6]  
Hawking SW(2014) = 4 Gen. Rel. Grav. 46 1711-undefined
[7]  
Strominger A(1999) = 4 Int. J. Theor. Phys. 38 1113-undefined
[8]  
Vafa C(2016) = 8 JHEP 05 054-undefined
[9]  
Sen A(2019) = 2 JHEP 10 062-undefined
[10]  
Maldacena JM(2020) = 1 Phys. Rev. X 10 017-undefined