Lethe-DEM: an open-source parallel discrete element solver with load balancing

被引:0
作者
Shahab Golshan
Peter Munch
Rene Gassmöller
Martin Kronbichler
Bruno Blais
机构
[1] École Polytechique de Montréal,Research Unit for Industrial Flows Processes (URPEI), Department of Chemical Engineering
[2] Helmholtz-Zentrum Hereon GmbH,Continuum Simulations, Institute of Material Systems Modeling
[3] Germany,Institute for Computational Mechanics
[4] Technical University of Munich,Department of Geological Sciences
[5] University of Florida,Division of Scientific Computing, Department of Information Technology
[6] Uppsala University,undefined
来源
Computational Particle Mechanics | 2023年 / 10卷
关键词
Discrete element methods (DEMs); High-performance computing; Load balancing; Silo; Rotating drum;
D O I
暂无
中图分类号
学科分类号
摘要
Approximately 75%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${75}\%$$\end{document} of the raw material and 50%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${50}\%$$\end{document} of the products in the chemical industry are granular materials. The discrete element method (DEM) provides detailed insights of phenomena at particle scale, and it is therefore often used for modeling granular materials. However, because DEM tracks the motion and contact of individual particles separately, its computational cost increases nonlinearly O(nplog(np))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n_\mathrm{p}\log (n_\mathrm{p}))$$\end{document} – O(np2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n_\mathrm{p}^2)$$\end{document} (depending on the algorithm) with the number of particles (np\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_\mathrm{p}$$\end{document}). In this article, we introduce a new open-source parallel DEM software with load balancing: Lethe-DEM. Lethe-DEM, a module of Lethe, consists of solvers for two-dimensional and three-dimensional DEM simulations. Load balancing allows Lethe-DEM to significantly increase the parallel efficiency by ≈25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx {25}$$\end{document}–70%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${70}\%$$\end{document} depending on the granular simulation. We explain the fundamental modules of Lethe-DEM, its software architecture, and the governing equations. Furthermore, we verify Lethe-DEM with several tests including analytical solutions and comparison with other software. Comparisons with experiments in a flat-bottomed silo, wedge-shaped silo, and rotating drum validate Lethe-DEM. We investigate the strong and weak scaling of Lethe-DEM with 1≤nc≤192\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${1}\le n_\mathrm{c} \le {192}$$\end{document} and 32≤nc≤320\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${32}\le n_\mathrm{c} \le {320}$$\end{document} processes, respectively, with and without load balancing. The strong-scaling analysis is performed on the wedge-shaped silo and rotating drum simulations, while for the weak-scaling analysis, we use a dam-break simulation. The best scalability of Lethe-DEM is obtained in the range of 5000≤np/nc≤15,000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${5000}\le n_\mathrm{p}/n_\mathrm{c} \le {15{,}000}$$\end{document}. Finally, we demonstrate that large-scale simulations can be carried out with Lethe-DEM using the simulation of a three-dimensional cylindrical silo with np=4.3×106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_\mathrm{p}={4.3}\times 10^6$$\end{document} on 320 cores.
引用
收藏
页码:77 / 96
页数:19
相关论文
共 144 条
  • [1] Richard P(2005)Slow relaxation and compaction of granular systems Nat Mater 4 121-128
  • [2] Nicodemi M(2019)Experimental methods in chemical engineering: discrete element method-dem Can J Chem Eng 97 1964-1973
  • [3] Delannay R(2020)Review and implementation of CFD-DEM applied to chemical process systems Chem Eng Sci 221 115646-142
  • [4] Ribiere P(2018)Numerical simulation of an indirect tensile test for asphalt mixtures using discrete element method software J Mater Civ Eng 30 04018067-83
  • [5] Bideau D(2017)Calibration of the discrete element method Powder Technol 310 104-404
  • [6] Blais B(2013)Three-dimensional discrete element modeling of micromechanical bending tests of ceramic-polymer composite materials Powder Technol 248 77-125
  • [7] Vidal D(2007)Discrete element method for modelling solid and particulate materials Int J Numer Methods Eng 70 379-541
  • [8] Bertrand F(2015)Discrete element modelling of unidirectional fibre-reinforced polymers under transverse tension Compos Part B Eng 73 118-470
  • [9] Patience GS(2011)Study of cold powder compaction by using the discrete element method Powder Technol 208 537-514
  • [10] Chaouki J(2009)Process modeling in the pharmaceutical industry using the discrete element method J Pharm Sci 98 442-149