Left annihilator of generalized derivations on Lie ideals in prime rings

被引:4
作者
Shujat F. [1 ]
Khan S. [2 ]
机构
[1] Department of Mathematics, Taibah University, Madinah
[2] Department of Mathematics, Aligarh Muslim University, Aligarh
来源
Rendiconti del Circolo Matematico di Palermo (1952 -) | 2015年 / 64卷 / 1期
关键词
Extended centroid; Generalized derivation; Prime ring; Utumi quotient ring;
D O I
10.1007/s12215-014-0182-6
中图分类号
学科分类号
摘要
Let R be a prime ring, L a noncentral Lie ideal of R, F a generalized derivation with associated nonzero derivation d of R. If a ∈ R such that (Formula Presented.) for all (Formula Presented.), where (Formula Presented.) are fixed non negative integers not all are zero and n is a fixed integer, then either a=0 or R satisfies S4, the standard identity in four variables. © 2014, Springer-Verlag Italia.
引用
收藏
页码:77 / 81
页数:4
相关论文
共 25 条
[1]  
Beidar K.I., Martindale W.S., Mikhalev A.V., Rings with Generalized Identities, Monographs and Textbooks in Pure and Applied Mathematics, (1996)
[2]  
Bresar M., A note on derivations, Math. J. Okayama Univ., 32, pp. 83-88, (1990)
[3]  
Bresar M., On the distance of the composition of the two derivations to be the generalized derivations, Glasgow Math. J., 33, 1, pp. 89-93, (1991)
[4]  
Bergen J., Herstein I.N., Kerr J.W., Lie ideals and derivations of prime rings, J. Algebra, 71, pp. 259-267, (1981)
[5]  
Chang C.M., Lin Y.C., Derivations on one sided ideals of prime rings, Tamsui Oxford J. Math., 17, 2, pp. 139-145, (2001)
[6]  
Chuang C.L., GPIs having coefficients in Utumi quotient rings, Proc. Am. Math. Soc., 103, pp. 723-728, (1988)
[7]  
Chuang C.L., Lee T.K., Rings with annihilator conditions on multilinear polynomials, Chin. J. Math., 24, 2, pp. 177-185, (1996)
[8]  
Dhara B., Power values of derivations with annihilator conditions on Lie ideals in prime rings, Comm. Algebra, 37, pp. 2159-2167, (2009)
[9]  
Dhara B., De V., Filippis, notes on generalized derivations on Lie ideals in prime ring, Bull. Korean Math. Soc., 46, 3, pp. 599-605, (2009)
[10]  
Dhara B., Sharma R.K., Derivations with annihilator conditions in prime rings, Publ. Math. Debrecen, 71, 1-2, pp. 11-21, (2007)