Sweeping processes with prescribed behavior on jumps

被引:0
作者
Vincenzo Recupero
Filippo Santambrogio
机构
[1] Politecnico di Torino,Dipartimento di Scienze Matematiche
[2] Univ. Paris-Sud,Laboratoire de Mathématiques d’Orsay
[3] CNRS,undefined
[4] Université Paris-Saclay,undefined
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2018年 / 197卷
关键词
Sweeping processes; Evolution variational inequalities; Play operator; Convex sets; Functions of bounded variation; 34A60; 49J52; 34G25; 47J20;
D O I
暂无
中图分类号
学科分类号
摘要
We present a generalized formulation of sweeping process where the behavior of the solution is prescribed at the jump points of the driving moving set. An existence and uniqueness theorem for such formulation is proved. As a consequence we derive a formulation and an existence/uniqueness theorem for sweeping processes driven by an arbitrary BV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textit{BV}}$$\end{document} moving set, whose evolution is not necessarily right continuous. Applications to the play operator of elastoplasticity are also shown.
引用
收藏
页码:1311 / 1332
页数:21
相关论文
共 96 条
  • [1] Addy K(2007)A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronics Nonlinear Anal. Hybrid Syst. 1 30-43
  • [2] Adly S(2014)Convex sweeping process in the framework of measure differential inclusions and evolution variational inequalities Math. Program. Ser. B 148 5-47
  • [3] Brogliato B(1990)Metric space valued functions of bounded variation Ann. Sc. Norm. Sup. Pisa 17 439-478
  • [4] Goeleven D(2000)Existence of solutions to the nonconvex sweeping process J. Differ. Equ. 164 286-295
  • [5] Adly S(2010)Differential inclusions with proximal normal cones in Banach spaces J. Convex Anal. 17 451-484
  • [6] Haddad T(2011)Stochastic perturbations of sweeping process J. Differ. Equ. 251 1195-1224
  • [7] Thibault L(2005)Nonconvex sweeping process and prox-regularity in Hilbert space J. Nonlinear Convex Anal. 6 359-374
  • [8] Ambrosio L(2010)Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems J. Convex Anal. 17 961-990
  • [9] Benabdellah H(2004)On uniqueness in evolution quasivariational inequalities J. Convex Anal. 11 111-130
  • [10] Bernicot F(1993)Evolution equations governed by the sweeping process Set-Valued Anal. 1 109-139