Generalized fractional maximal operators on Musielak-Orlicz-Morrey spaces

被引:0
作者
Yoshihiro Mizuta
Takao Ohno
Tetsu Shimomura
机构
[1] Hiroshima University,Department of Mathematics, Graduate School of Advanced Science and Engineering
[2] Oita University,Faculty of Education
[3] Hiroshima University,Department of Mathematics, Graduate School of Humanities and Social Sciences
来源
Positivity | 2023年 / 27卷
关键词
Generalized fractional maximal operator; Musielak-Orlicz-Morrey spaces; Sobolev’s inequality; Trudinger’s inequality; 42B25; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the boundedness of the generalized fractional maximal operator Mρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\rho }$$\end{document} on Musielak-Orlicz-Morrey spaces, where ρ(x,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (x,r)$$\end{document} is a positive function on RN×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{R}^N \times (0, \infty )$$\end{document} satisfying certain conditions. What is new in the present paper is Sobolev and Trudinger type inequalities for Mρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\rho }$$\end{document} on non-doubling Musielak-Orlicz-Morrey spaces.
引用
收藏
相关论文
共 50 条