Generalized fractional maximal operators on Musielak-Orlicz-Morrey spaces

被引:0
|
作者
Yoshihiro Mizuta
Takao Ohno
Tetsu Shimomura
机构
[1] Hiroshima University,Department of Mathematics, Graduate School of Advanced Science and Engineering
[2] Oita University,Faculty of Education
[3] Hiroshima University,Department of Mathematics, Graduate School of Humanities and Social Sciences
来源
Positivity | 2023年 / 27卷
关键词
Generalized fractional maximal operator; Musielak-Orlicz-Morrey spaces; Sobolev’s inequality; Trudinger’s inequality; 42B25; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the boundedness of the generalized fractional maximal operator Mρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\rho }$$\end{document} on Musielak-Orlicz-Morrey spaces, where ρ(x,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (x,r)$$\end{document} is a positive function on RN×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{R}^N \times (0, \infty )$$\end{document} satisfying certain conditions. What is new in the present paper is Sobolev and Trudinger type inequalities for Mρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\rho }$$\end{document} on non-doubling Musielak-Orlicz-Morrey spaces.
引用
收藏
相关论文
共 50 条
  • [1] Generalized fractional maximal operators on Musielak-Orlicz-Morrey spaces
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    POSITIVITY, 2023, 27 (02)
  • [2] BOUNDEDNESS OF THE MAXIMAL OPERATOR ON MUSIELAK-ORLICZ-MORREY SPACES
    Maeda, Fumi-Yuki
    Ohno, Takao
    Shimomura, Tetsu
    TOHOKU MATHEMATICAL JOURNAL, 2017, 69 (04) : 483 - 495
  • [3] Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces
    Maeda, Fumi-Yuki
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (01): : 76 - 96
  • [4] Commutators of operators in Musielak-Orlicz-Morrey spaces on differential forms
    Wang, Jianwei
    Xing, Yuming
    ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (04)
  • [5] Generalized Riesz potential operators on Musielak-Orlicz-Morrey spaces over unbounded metric measure spaces
    Ohno, Takao
    Shimomura, Tetsu
    ANALYSIS AND MATHEMATICAL PHYSICS, 2025, 15 (02)
  • [6] Orlicz-fractional maximal operators in Morrey and Orlicz–Morrey spaces
    Takeshi Iida
    Positivity, 2021, 25 : 243 - 272
  • [7] Boundedness of Maximal Operators and Sobolev's Inequality on Non-Homogeneous Central Musielak-Orlicz-Morrey Spaces
    Ohno, Takao
    Shimomura, Tetsu
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3341 - 3357
  • [8] Orlicz-fractional maximal operators in Morrey and Orlicz-Morrey spaces
    Iida, Takeshi
    POSITIVITY, 2021, 25 (01) : 243 - 272
  • [9] Generalized fractional maximal and integral operators on Orlicz and generalized Orlicz-Morrey spaces of the third kind
    Deringoz, Fatih
    Guliyev, Vagif S.
    Nakai, Eiichi
    Sawano, Yoshihiro
    Shi, Minglei
    POSITIVITY, 2019, 23 (03) : 727 - 757
  • [10] Generalized fractional maximal operators and vector-valued inequalities on generalized Orlicz–Morrey spaces
    Denny Ivanal Hakim
    Eiichi Nakai
    Yoshihiro Sawano
    Revista Matemática Complutense, 2016, 29 : 59 - 90