Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness

被引:0
作者
Glenn Byrenheid
Lutz Kämmerer
Tino Ullrich
Toni Volkmer
机构
[1] University of Bonn,Institute for Numerical Simulation
[2] Technische Universität Chemnitz,Faculty of Mathematics
来源
Numerische Mathematik | 2017年 / 136卷
关键词
65T40; 42A10; 65D30; 65D32; 68Q17; 68Q25; 42B35; 65T50; 65Y20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the approximate recovery of multivariate periodic functions from a discrete set of function values taken on a rank-1 lattice. Moreover, the main result is the fact that any (non-)linear reconstruction algorithm taking function values on any integration lattice of size M has a dimension-independent lower bound of 2-(α+1)/2M-α/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{-(\alpha +1)/2} M^{-\alpha /2}$$\end{document} when considering the optimal worst-case error with respect to function spaces of (hybrid) mixed smoothness α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} on the d-torus. We complement this lower bound with upper bounds that coincide up to logarithmic terms. These upper bounds are obtained by a detailed analysis of a rank-1 lattice sampling strategy, where the rank-1 lattices are constructed by a component–by–component method. The lattice (group) structure allows for an efficient approximation of the underlying function from its sampled values using a single one-dimensional fast Fourier transform. This is one reason why these algorithms keep attracting significant interest. We compare our results to recent (almost) optimal methods based upon samples on sparse grids.
引用
收藏
页码:993 / 1034
页数:41
相关论文
共 45 条
[1]  
Bergmann R(2013)The fast Fourier transform and fast wavelet transform for patterns on the torus Appl. Comput. Harmon. Anal. 35 39-51
[2]  
Bungartz HJ(2004)Sparse grids Acta Numer. 13 1-123
[3]  
Griebel M(2016)Sampling on energy-norm based sparse grids for the optimal recovery of Sobolev type functions in J. Approx. Theory 207 207-231
[4]  
Byrenheid G(2010)Constructing lattice rules based on weighted degree of exactness and worst-case error Computing 87 63-89
[5]  
Dũng D(2007)An overview of fast component-by-component constructions of lattice rules and lattice sequences PAMM 7 1022,609-1022,610
[6]  
Sickel W(2013)N-widths and Found. Comput. Math. 13 965-1003
[7]  
Ullrich T(2009)-dimensions for high-dimensional approximations Math. Comput. 78 2223-2257
[8]  
Cools R(2016)Optimized general sparse grid approximation spaces for operator equations Numer. Math 134 163-196
[9]  
Kuo FY(2013)Optimal quasi-Monte Carlo rules on higher order digital nets for the numerical integration of multivariate periodic functions SIAM J. Numer. Anal. 51 2773-2796
[10]  
Nuyens D(2012)Reconstructing hyperbolic cross trigonometric polynomials by sampling along rank-1 lattices J. Complex. 28 76-92