Convergence of parallel block SSOR multisplitting method for block H-matrix

被引:0
作者
G. Cao
Y. Huang
Y. Song
机构
[1] Nanjing Normal University,Jiangsu Key Laboratory for NSLSCS, Institute of Mathematics, School of Mathematical Sciences
[2] Nanjing University of Information Science & Technology,School of Economics and Management
[3] Nanjing University of Information Science & Technology,College of Math & Statistics
来源
Calcolo | 2013年 / 50卷
关键词
Linear systems; Block H-matrix; Block strictly diagonally dominant matrix; SSOR multisplitting ; Parallel multisplitting method; Convergence; 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate block SSOR multisplittings. When the coefficient matrix is a block H-matrix or a (generalized) block strictly diagonally dominant matrix, the convergence of the parallel block SSOR multisplitting method for solving nonsingular linear systems is proved. Two numerical examples are given to illustrate the theoretical results.
引用
收藏
页码:239 / 253
页数:14
相关论文
共 22 条
  • [1] Cao G(2009)On parallel multisplitting methods for symmetric positive semidefinite linear systems Numer. Linear Algebra Appl. 16 301-318
  • [2] Song Y(2011)Semiconvergence of parallel multisplitting methods for symmetric positive semidefinite linear systems Numer. Linear Algebra Appl. 18 317-324
  • [3] Cao G(1995)Block iterations and compactification for periodic block dominant systems associated to invariant tori approximation Appl. Numer. Math. 17 251-274
  • [4] Song Y(1992)Block M-matrices and computation of invariant tori SIAM J. Sci. Stat. Comput. 13 885-903
  • [5] Dieci L(1962)Block diagonally dominant matrices and generalizations of the Gerschgorin circle theorem Pac. J. Math. 12 1241-1250
  • [6] Bader G(1986)Multiple grid and Osher’s scheme for the efficient solution of the steady Euler equations Appl. Numer. Math. 2 475-493
  • [7] Dieci L(2003)Nonsingularity/singularity criteria for nonstrictly block diagonally dominant matrices Linear Algebra Appl. 359 133-159
  • [8] Lorenz J(1985)Multisplittings of matrices and parallel solution of linear systems SIAM J. Algebr. Discret. Math. 6 630-640
  • [9] Feingold DG(1987)Incomplete blockwise factorizations of (block) H-matrices Linear Algebra Appl. 90 119-132
  • [10] Varga RS(1969)Blocs-H-matrices et convergence des méthodes itératives classiques par blocs Linear Algebra Appl. 2 223-265