Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma

被引:44
作者
Chanda, Tirtha [1 ]
Hauser, Katja [1 ]
Hobelsberger, Sarah [2 ]
Bucher, Tabea-Clara [1 ]
Garcia, Carina Nogueira [1 ]
Wies, Christoph [1 ,3 ]
Kittler, Harald [4 ]
Tschandl, Philipp [4 ]
Navarrete-Dechent, Cristian [5 ]
Podlipnik, Sebastian [6 ]
Chousakos, Emmanouil [7 ]
Crnaric, Iva [8 ]
Majstorovic, Jovana [9 ]
Alhajwan, Linda [10 ]
Foreman, Tanya [11 ]
Peternel, Sandra [12 ]
Sarap, Sergei [13 ]
Ozdemir, Irem [14 ]
Barnhill, Raymond L. [15 ]
Llamas-Velasco, Mar [16 ]
Poch, Gabriela [17 ,18 ,19 ]
Korsing, Soeren [20 ]
Sondermann, Wiebke [21 ]
Gellrich, Frank Friedrich [2 ]
Heppt, Markus V. [21 ]
Erdmann, Michael [21 ]
Haferkamp, Sebastian [22 ]
Drexler, Konstantin [22 ]
Goebeler, Matthias [23 ]
Schilling, Bastian [23 ]
Utikal, Jochen S. [24 ]
Ghoreschi, Kamran [17 ,18 ,19 ]
Froehling, Stefan [25 ,26 ]
Krieghoff-Henning, Eva [1 ]
Brinker, Titus J. [1 ]
机构
[1] German Canc Res Ctr, Digital Biomarkers Oncol Grp, Heidelberg, Germany
[2] Tech Univ Dresden, Univ Hosp, Dept Dermatol, Dresden, Germany
[3] Heidelberg Univ, Med Fac, Heidelberg, Germany
[4] Med Univ Vienna, Dept Dermatol, Vienna, Austria
[5] Pontificia Univ Catolica Chile, Escuela Med, Dept Dermatol, Santiago, Chile
[6] Univ Barcelona, Hosp Clin Barcelona, Dermatol Dept, IDIBAPS, Barcelona, Spain
[7] Natl & Kapodistrian Univ Athens, Med Sch, Dept Pathol 1, Athens, Greece
[8] Sestre Milosrdnice Univ Hosp Ctr, Dept Dermatovenereol, Zagreb, Croatia
[9] Dermatovenerol Clin, Derma Style, Belgrade, Serbia
[10] Dubai London Clin, Dept Dermatol, Dubai, U Arab Emirates
[11] West Dermatol, Newport Beach, CA USA
[12] Univ Rijeka, Clin Hosp Ctr Rijeka, Fac Med, Dept Dermatovenereol, Rijeka, Croatia
[13] LaserMed, Tallinn, Estonia
[14] Gazi Univ, Fac Med, Dept Dermatol, Ankara, Turkiye
[15] Univ Paris, Unit Format & Res Med, Inst Curie, Dept Translat Res, Paris, France
[16] Univ Autonoma Madrid, Madrid, Spain
[17] Charite Univ Med Berlin, Berlin, Germany
[18] Free Univ Berlin, Berlin, Germany
[19] Humboldt Univ, Dept Dermatol Venereol & Allergol, Berlin, Germany
[20] Univ Duisburg Essen, Univ Hosp Essen, Dept Dermatol, Essen, Germany
[21] Friedrich Alexander Univ Erlangen Nurnberg, Dept Dermatol, Uniklinikum Erlangen, Erlangen, Germany
[22] Univ Hosp Regensburg, Dept Dermatol, Regensburg, Germany
[23] Univ Hosp Wurzburg, Dept Dermatol Venereol & Allergol, Wurzburg, Germany
[24] Ruprecht Karl Univ Heidelberg, Univ Med Ctr Mannheim, Dept Dermatol Venereol & Allergol, Mannheim, Germany
[25] Natl Ctr Tumor Dis NCT Heidelberg, Div Translat Med Oncol, Heidelberg, Germany
[26] German Canc Res Ctr, Heidelberg, Germany
关键词
ARTIFICIAL-INTELLIGENCE; NETWORKS;
D O I
10.1038/s41467-023-43095-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial intelligence (AI) systems have been shown to help dermatologists diagnose melanoma more accurately, however they lack transparency, hindering user acceptance. Explainable AI (XAI) methods can help to increase transparency, yet often lack precise, domain-specific explanations. Moreover, the impact of XAI methods on dermatologists' decisions has not yet been evaluated. Building upon previous research, we introduce an XAI system that provides precise and domain-specific explanations alongside its differential diagnoses of melanomas and nevi. Through a three-phase study, we assess its impact on dermatologists' diagnostic accuracy, diagnostic confidence, and trust in the XAI-support. Our results show strong alignment between XAI and dermatologist explanations. We also show that dermatologists' confidence in their diagnoses, and their trust in the support system significantly increase with XAI compared to conventional AI. This study highlights dermatologists' willingness to adopt such XAI systems, promoting future use in the clinic. Artificial intelligence has become popular as a cancer classification tool, but there is distrust of such systems due to their lack of transparency. Here, the authors develop an explainable AI system which produces text- and region-based explanations alongside its classifications which was assessed using clinicians' diagnostic accuracy, diagnostic confidence, and their trust in the system.
引用
收藏
页数:17
相关论文
共 63 条
[1]   Seven-point checklist of dermoscopy revisited [J].
Argenziano, G. ;
Catricala, C. ;
Ardigo, M. ;
Buccini, P. ;
De Simone, P. ;
Eibenschutz, L. ;
Ferrari, A. ;
Mariani, G. ;
Silipo, V. ;
Sperduti, I. ;
Zalaudek, I. .
BRITISH JOURNAL OF DERMATOLOGY, 2011, 164 (04) :785-790
[2]   On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation [J].
Bach, Sebastian ;
Binder, Alexander ;
Montavon, Gregoire ;
Klauschen, Frederick ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2015, 10 (07)
[3]   Explainable skin lesion diagnosis using taxonomies [J].
Barata, Catarina ;
Celebi, M. Emre ;
Marques, Jorge S. .
PATTERN RECOGNITION, 2021, 110
[4]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[5]   The need for uncertainty quantification in machine-assisted medical decision making [J].
Begoli, Edmon ;
Bhattacharya, Tanmoy ;
Kusnezov, Dimitri .
NATURE MACHINE INTELLIGENCE, 2019, 1 (01) :20-23
[6]  
Bossuyt PM, 2015, BMJ-BRIT MED J, V351, DOI [10.1148/radiol.2015151516, 10.1136/bmj.h5527, 10.1373/clinchem.2015.246280]
[7]   Unsupervised Domain Adaptation With Adversarial Residual Transform Networks [J].
Cai, Guanyu ;
Wang, Yuqin ;
He, Lianghua ;
Zhou, MengChu .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (08) :3073-3086
[8]  
Chanda Tirtha, 2023, Zenodo, DOI 10.5281/ZENODO.8348316
[9]   Concept whitening for interpretable image recognition [J].
Chen, Zhi ;
Bei, Yijie ;
Rudin, Cynthia .
NATURE MACHINE INTELLIGENCE, 2020, 2 (12) :772-782
[10]  
Codella NCF, 2018, I S BIOMED IMAGING, P168, DOI 10.1109/ISBI.2018.8363547