Impact of Drain Underlap and High Bandgap Strip on Cylindrical Gate All Around Tunnel FET and its Influence on Analog/RF Performance

被引:0
作者
Arya Dutt
Sanjana Tiwari
Abhishek Kumar Upadhyay
Ribu Mathew
Ankur Beohar
机构
[1] VIT Bhopal University,School of Electrical and Electronics Engineering (SEEE)
[2] Technische Universität Dresden,Chair for Electron Devices and Integrated Circuits
来源
Silicon | 2022年 / 14卷
关键词
High band gap strip; Hetero material; Gate all around; Tunnel FET; Band-to-band tunneling (BTBT);
D O I
暂无
中图分类号
学科分类号
摘要
This paper comprises of design and analysis of novel gate all around (GAA) cylindrical tunnel field effect transistor (TFET) using technology computer aided designing (TCAD) tool. The device designing incorporates drain underlap (DU) and high band-gap strip (HBS) at drain-channel junction. The purpose of DU is to minimize the drain induced influenced short channel effects (SCEs). While, the HBS is used to decrease the tunneling of carriers from channel-drain interface, which will result suppressed OFF-current (IOFF)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(I_{OFF})$$\end{document}. The analysis of analog/RF parameters of proffered TFET device is carried out in terms of drain current profile, subthreshold swing (SS), parasitic capacitance, transconductance (gm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g_m)$$\end{document}, cut-off frequency (fT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f_T)$$\end{document}, maximum oscillation frequency (fmax)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f_{max})$$\end{document}, and gain bandwidth (GBW).
引用
收藏
页码:9789 / 9796
页数:7
相关论文
共 67 条
  • [1] Kim S(2020)Investigation of electrical characteristic behavior induced by channel-release process in stacked nanosheet gate-all-around MOSFETs IEEE Trans Electron Devices 67 2648-2652
  • [2] Saxena RS(2009)Stepped oxide hetero-material gate trench power MOSFET for improved performance IEEE Trans Electron Devices 56 1355-1359
  • [3] Kumar MJ(2019)An analytical drain current model for cylindrical gate DMG-GC-DOT MOSFET Int J Electron Lett 7 458-472
  • [4] Jaafar H(2015)Short-channel effects in tunnel FETs IEEE Trans Electron Devices 62 3019-3024
  • [5] Aouaj A(2007)Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec IEEE Electron Device Letters 28 743-745
  • [6] Bouziane A(2013)Performance enhancement of nanowire tunnel field-effect transistor with asymmetry-gate based on different screening length IEEE Electron Device Lett 34 1482-1484
  • [7] Iniguez B(2010)Tunnel field effect transistor with raised Germanium source IEEE Electron Device Lett 31 1107-1109
  • [8] Wu J(2016)Performance enhancement of asymmetrical underlap 3D-cylindrical GAA-TFET with low spacer width IET Micro Nano Lett 11 443-445
  • [9] Min J(2020)Optimization of electrical parameters of pocket doped SOI TFET with L shaped gate Silicon 12 693-700
  • [10] Taur Y(2020)Performance investigation of gate engineered tri-gate SOI TFETs with different high-K dielectric materials for low power applications Silicon 12 1819-1829